-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo.py
214 lines (166 loc) · 9 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import StepLR
from nets import Net
from config import args
from dataloader import Producer, loadImg, loadImg_testing
from utils import read_miniImageNet_pathonly, mean_confidence_interval, Dashboard
from Queue import Queue
import numpy as np
import threading
import os
import torchnet as tnt
import time
from tqdm import tqdm
def weighted_mse_loss(input, target, weight):
return torch.sum(weight * (input - target) ** 2)
def main(args):
'''
main function
'''
if args.logport:
args.logport = Dashboard(args.logport, 'dashboard')
EPOCH_SIZE = args.num_episode*args.num_query*args.way_train
EPOCH_SIZE_TEST = args.num_episode_test*args.num_query*args.way_test
SM_CONSTANT = 50
'''define network'''
net = Net(args.num_in_channel, args.num_filter)
if torch.cuda.is_available():
net.cuda()
'''
load model if needed
'''
if args.model_load_path_net!='':
net.load_state_dict(torch.load(args.model_load_path_net))
net.cuda()
print('model loaded')
''' define loss, optimizer'''
criterion = nn.CrossEntropyLoss()
params = list(net.parameters())
optimizer = optim.Adam(params, lr=args.learning_rate)
'''get data'''
trainList = read_miniImageNet_pathonly(TESTMODE=False,
miniImageNetPath='/media/fujenchu/data/miniImageNet_Ravi/',
imgPerCls=600)
testList = read_miniImageNet_pathonly(TESTMODE=True,
miniImageNetPath='/media/fujenchu/data/miniImageNet_Ravi/',
imgPerCls=600)
scheduler = StepLR(optimizer, step_size=40, gamma=0.5)
''' training'''
for epoch in range(1000):
scheduler.step()
running_loss = 0.0
avg_accu_Train = 0.0
accu_Test_stats = []
net.train()
# epoch training list
trainList_combo = Producer(trainList, args.way_train, args.num_episode, "training") # combo contains [query_label, query_path ]
list_trainset = tnt.dataset.ListDataset(trainList_combo, loadImg)
trainloader = list_trainset.parallel(batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True)
for i, data in enumerate(tqdm(trainloader), 0):
#for i, data in enumerate(trainloader, 0):
# get inputs
batchSize = data[0].size()[0]
labels = torch.unsqueeze(data[0], 1)
images = data[1:]
images_all = torch.cat(images).permute(0, 3, 1, 2).float()
labels_one_hot = torch.zeros(data[0].size()[0], args.way_train)
labels_one_hot.scatter_(1, labels, 1.0)
# wrap in Variable
if torch.cuda.is_available():
images_all, labels = Variable(images_all.cuda()), Variable(labels.cuda())
else:
images_all, labels = Variable(images_all), Variable(labels)
# zero gradients
optimizer.zero_grad()
# forward + backward + optimizer
feature_s_all_t0_p = net(images_all)
feature_s_all_t0_p = torch.split(feature_s_all_t0_p, batchSize, 0)
cosineDist_list = [[] for _ in range(args.way_train)]
for idx in range(args.way_train):
cosineDist_list[idx] = SM_CONSTANT * torch.sum(
torch.mul(feature_s_all_t0_p[-1].div(torch.norm(feature_s_all_t0_p[-1], p=2, dim=1, keepdim=True).expand_as(feature_s_all_t0_p[-1])),
feature_s_all_t0_p[idx].div(torch.norm(feature_s_all_t0_p[idx], p=2, dim=1, keepdim=True).expand_as(feature_s_all_t0_p[idx]))), dim=1, keepdim=True)
cosineDist_all = torch.cat(cosineDist_list, 1)
labels = labels.squeeze(1)
loss = criterion(cosineDist_all, labels)
loss.backward()
optimizer.step()
# summing up
running_loss += loss.data[0]
_, predicted = torch.max(cosineDist_all.data, 1)
avg_accu_Train += (predicted == labels.data).sum()
if i % args.log_step == args.log_step-1:
#print('[%d, %5d] train loss: %.3f train accuracy: %.3f' % (epoch + 1, i + 1, running_loss / args.log_step, avg_accu_Train/(args.log_step*batchSize)))
if args.logport:
args.logport.appendlog(running_loss / args.log_step, 'Training Loss')
args.logport.appendlog(avg_accu_Train/(args.log_step*batchSize), 'Training Accuracy')
args.logport.image((images[-1][0, :, :, :]).permute(2, 0, 1), 'query img', mode='img')
for idx in range(args.way_train):
args.logport.image((images[idx][0, :, :, :]).permute(2, 0, 1), 'support img', mode='img')
running_loss = 0.0
avg_accu_Train = 0.0
if (i+1) % args.save_step == 0:
torch.save(net.state_dict(),
os.path.join(args.model_path,
'net-model-%d-%d.pkl' %(epoch+1, i+1)))
net.eval()
# epoch training list
testList_combo = Producer(testList, args.way_test, args.num_episode_test, "testing") # combo contains [query_label, query_path ]
list_testset = tnt.dataset.ListDataset(testList_combo, loadImg_testing)
testloader = list_testset.parallel(batch_size=args.batch_size_test, num_workers=args.num_workers, shuffle=False)
#for i, data in enumerate(tqdm(testloader), 0):
for i, data in enumerate(testloader, 0):
# get inputs
batchSize = data[0].size()[0]
labels = torch.unsqueeze(data[0], 1)
images = data[1:]
images_all = torch.cat(images).permute(0, 3, 1, 2).float()
labels_one_hot = torch.zeros(batchSize, args.way_test)
labels_one_hot.scatter_(1, labels, 1.0)
# wrap in Variable
if torch.cuda.is_available():
images_all, labels = Variable(images_all.cuda(), volatile = True), Variable(labels.cuda(), volatile = True)
else:
images_all, labels = Variable(images_all, volatile = True), Variable(labels, volatile = True)
# forward
feature_s_all_t0_p = net(images_all)
feature_s_all_t0_p = torch.split(feature_s_all_t0_p, batchSize, 0)
cosineDist_list = [[] for _ in range(args.way_train)]
for idx in range(args.way_train):
cosineDist_list[idx] = SM_CONSTANT * torch.sum(
torch.mul(feature_s_all_t0_p[-1].div(torch.norm(feature_s_all_t0_p[-1], p=2, dim=1, keepdim=True).expand_as(feature_s_all_t0_p[-1])),
feature_s_all_t0_p[idx].div(torch.norm(feature_s_all_t0_p[idx], p=2, dim=1, keepdim=True).expand_as(feature_s_all_t0_p[idx]))), dim=1, keepdim=True)
cosineDist_all = torch.cat(cosineDist_list, 1)
_, predicted = torch.max(cosineDist_all.data, 1)
accu_Test_stats.append((predicted == torch.squeeze(labels, 1).data.cuda()).sum()/float(batchSize))
equality = (predicted != torch.squeeze(labels, 1).data.cuda())
equality_s = (predicted == torch.squeeze(labels, 1).data.cuda())
equality_idx = equality.nonzero()
equality_idx_s = equality_s.nonzero()
if i % args.log_step == args.log_step-1:
if args.logport:
pred_np = predicted.cpu().numpy()
labels_np = labels.cpu().data.numpy()
batch_idx = equality_idx[0].cpu().numpy().astype(int)
bb = batch_idx[0]
args.logport.image((images[-1][bb, :, :, :]).permute(2, 0, 1), np.array_str(labels_np[bb]) + np.array_str(pred_np[bb]) + ' query img', mode='img-test')
support_image = []
for idx in range(args.way_train):
support_image.append(images[idx][bb, :, :, :].permute(2, 0, 1))
args.logport.image(torch.cat(support_image, 2), 'support img', mode='img-test')
batch_idx = equality_idx_s[0].cpu().numpy().astype(int)
bb = batch_idx[0]
args.logport.image((images[-1][bb, :, :, :]).permute(2, 0, 1), np.array_str(labels_np[bb]) + np.array_str(pred_np[bb]) + ' query img', mode='img-test')
support_image = []
for idx in range(args.way_train):
support_image.append(images[idx][bb, :, :, :].permute(2, 0, 1))
args.logport.image(torch.cat(support_image, 2), 'support img', mode='img-test')
m, h = mean_confidence_interval(np.asarray(accu_Test_stats), confidence=0.95)
print('[epoch %3d] test accuracy with 0.95 confidence: %.4f, +-: %.4f' % (epoch + 1, m, h))
#avg_accu_Test = 0.0
accu_Test_stats = []
if __name__ == '__main__':
main(args)