-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathrun_infer_nyu.py
165 lines (123 loc) · 6.21 KB
/
run_infer_nyu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import os
import torch.backends.cudnn as cudnn
import models
import torchvision.transforms as transforms
import flow_transforms
from scipy.ndimage import imread
from scipy.misc import imsave
from loss import *
import time
import random
'''
Infer from nyu dataset:
author:Fengting Yang
last modification: Mar.14th 2019
usage:
1. set the ckpt path (--pretrained) and output
2. comment the output if do not need
results will be saved at the args.output
'''
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__"))
parser = argparse.ArgumentParser(description='PyTorch SPixelNet inference on a folder of imgs',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data_dir', metavar='DIR', default='', help='path to images folder')
parser.add_argument('--pretrained', metavar='PTH', help='path to pre-trained model', default= './pretrain_ckpt/SpixelNet_bsd_ckpt.tar')
parser.add_argument('--output', metavar='DIR', default= '' , help='path to output folder')
parser.add_argument('--downsize', default=16, type=float,help='superpixel grid cell, must be same as training setting')
parser.add_argument('-nw', '--num_threads', default=1, type=int, help='num_threads')
parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size')
# nyu only has one type
parser.add_argument('--input_img_height', '-v_imgH', default=480, type=int, help='img height_must be 16*n')
parser.add_argument('--input_img_width', '-v_imgW', default=640, type=int, help='img width must be 16*n')
args = parser.parse_args()
args.test_list = args.data_dir + '/nyuv2_test_subset.txt'
random.seed(100)
@torch.no_grad()
def test(args, model, img_paths, save_path, spixeIds, idx,scale):
# Data loading code
input_transform = transforms.Compose([
flow_transforms.ArrayToTensor(),
transforms.Normalize(mean=[0,0,0], std=[255,255,255]),
transforms.Normalize(mean=[0.411,0.432,0.45], std=[1,1,1])
])
img_file = img_paths[idx]
load_path = img_file
imgId = os.path.basename(img_file)[:-4]
img_ = imread(load_path)
H_, W_, _ = img_.shape
img = cv2.resize(img_, (int( args.input_img_width), int( args.input_img_height)), interpolation=cv2.INTER_CUBIC)
img1 = input_transform(img)
ori_img = input_transform(img_)
# compute output
tic = time.time()
output = model(img1.cuda().unsqueeze(0))
toc = time.time() - tic
# assign the spixel map
curr_spixl_map = update_spixl_map(spixeIds, output)
# The orignal sz of nyu test set 448*608
ori_sz_spixel_map = F.interpolate(curr_spixl_map.type(torch.float), size=( int(448), int(608)), mode='nearest').type(torch.int)
mean_values = torch.tensor([0.411, 0.432, 0.45], dtype=img1.cuda().unsqueeze(0).dtype).view(3, 1, 1)
spixel_viz, spixel_label_map = get_spixel_image((ori_img + mean_values).clamp(0, 1), ori_sz_spixel_map.squeeze(), n_spixels= 1200*scale*scale, b_enforce_connect=True)
# ************************ Save all result********************************************
#save img, uncomment it if needed
# if not os.path.isdir(os.path.join(save_path, 'img')):
# os.makedirs(os.path.join(save_path, 'img'))
# spixl_save_name = os.path.join(save_path, 'img', imgId + '.jpg')
# img_save = (ori_img + mean_values).clamp(0, 1)
# imsave(spixl_save_name, img_save.detach().cpu().numpy().transpose(1, 2, 0))
# save spixel viz
if not os.path.isdir(os.path.join(save_path, 'spixel_viz')):
os.makedirs(os.path.join(save_path, 'spixel_viz'))
spixl_save_name = os.path.join(save_path, 'spixel_viz', imgId + '_sPixel.png')
imsave(spixl_save_name, spixel_viz.transpose(1, 2, 0))
# save the unique maps as csv
if not os.path.isdir(os.path.join(save_path, 'map_csv')):
os.makedirs(os.path.join(save_path, 'map_csv'))
output_path = os.path.join(save_path, 'map_csv', imgId + '.csv')
# plus 1 to make it consistent with the toolkit format
np.savetxt(output_path, (spixel_label_map + 1).astype(int), fmt='%i',delimiter=",")
if idx % 10 == 0:
print("processing %d"%idx)
return toc
def main():
global args, save_path
data_dir = args.data_dir
print("=> fetching img pairs in '{}'".format(data_dir))
input_img_height = args.input_img_height
input_img_width = args.input_img_width
for scale in [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4]:
assert (input_img_height * scale % 16 == 0 and input_img_width * scale % 16 == 0)
save_path = args.output + '/SPixelNet_nSpixel_{0}'.format(int(input_img_height/16 * scale * input_img_width /16 * scale))
args.input_img_height, args.input_img_width = input_img_height * scale, input_img_width * scale
print('=> will save everything to {}'.format(save_path))
if not os.path.isdir(save_path):
os.makedirs(save_path)
tst_lst = []
with open(args.test_list, 'r') as tf:
img_path = tf.readlines()
for id in img_path:
img_path = os.path.join(data_dir,'img/%.5d.jpg'%int(id[:-1]))
if not os.path.isfile(img_path):
print('The validate images are missing in {}'.format(os.path.dirname(img_path)))
print('Please pre-process the NYUv2 dataset as README states and provide the correct dataset path.')
exit(1)
tst_lst.append(img_path)
print('{} samples found'.format(len(tst_lst)))
# create model
network_data = torch.load(args.pretrained)
print("=> using pre-trained model '{}'".format(network_data['arch']))
model = models.__dict__[network_data['arch']]( data = network_data).cuda()
model.eval()
args.arch = network_data['arch']
cudnn.benchmark = True
spixlId, XY_feat_stack = init_spixel_grid(args, b_train=False)
mean_time = 0
for n in range(len(tst_lst)):
time = test(args, model, tst_lst, save_path, spixlId, n,scale)
mean_time += time
print("avg_time per img: %.3f"%(mean_time/len(tst_lst)))
if __name__ == '__main__':
main()