-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_alter.py
488 lines (358 loc) · 13.3 KB
/
main_alter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
###NORMALISE AFTER EACH SENTENCE PROCESINNG IS DONE ONLY!
import sys, os, math, re, random, copy
from collections import OrderedDict
def init_a(tag_list):
a={}
for i in tag_list:
for j in tag_list:
if i not in a:
a[i]={}
a[i][j]=random.random()
a[i]['f']=random.random()
#print "a[", i,a[i]['f']
#Normalise data
return a
def normalise_a(a, tag_list):
sum=0.
a_matrix = copy.deepcopy(a)
for tag_1 in tag_list:
for tag_2 in tag_list:
sum+= a_matrix[tag_1][tag_2]
sum+= a_matrix[tag_1]['f']
for tag_1 in tag_list:
for tag_2 in tag_list:
a_matrix[tag_1][tag_2] = float(a_matrix[tag_1][tag_2])/sum
a_matrix[tag_1]['f'] = float(a_matrix[tag_1]['f'])/sum
#print "normalising a...", tag_1, a_matrix[tag_1]['f']
return a_matrix
def init_b(tag_list, line_list):
b={}
for tag in tag_list:
b[tag]={}
for sentence in line_list:
for tag in tag_list:
sum = 0.
for word in sentence:
b[tag][word]= random.random()
sum += b[tag][word]
for word in sentence:
b[tag][word] = b[tag][word]/sum
return b
def normalise_b(b, tag_list, line_list):
for sentence in line_list:
for tag in tag_list:
sum=0.
for word in sentence:
if word =='':
continue
sum += b[tag][word]
for word in sentence:
if word == '':
continue
b[tag][word] = b[tag][word] / sum
#print "b", i, word, b[i][word]
return b
def init_pi_and_normalise(tag_list):
pi={}
sum=0.
for tag in tag_list:
pi[tag]=random.random()
sum+= pi[tag]
for tag in tag_list:
pi[tag] = pi[tag]/sum
return pi
def normalise_b_internal(b, tag_list, sentence):
#print line
for tag in tag_list:
sum=0.
for word in sentence:
sum += b[tag][word]
for word in sentence:
b[tag][word] = b[tag][word] / sum
return b
def forward(a_matrix, b_matrix, pi, line, tag_list):
fwd = {}
'''
It is of the format fwd[timestamp][tag]
print "b [i][word]" , b_matri[i][word], sum
'''
#line = line[0]
for i, word in enumerate(line):
if word == '':
del line[i]
#First make the dict of dicts for len of line_list
for i in range(1,len(line)+1):
fwd[i]={}
#Now initialise the first timestamp probs
#Make a dict of c values for scaling
c={}
#Also intialise c[1] along with it
c[1] = 0.
for tag in tag_list:
fwd[1][tag]=pi[tag]*b_matrix[tag][line[0]]
c[1] = c[1] + fwd[1][tag]
#Scale the fwd[1]
c[1] = 1./ c[1]
for tag in tag_list:
fwd[1][tag] = (c[1] * fwd[1][tag])
#Now run the algorithm
for i in range(2, len(line)+1):
c[i] = 0.
j = i-1
for tag_pres in tag_list:
fwd[i][tag_pres]=0.
for tag_prev in tag_list:
#print fwd[i][tag_pres]
#print fwd[j][tag_prev]
#print a_matrix[tag_prev][tag_pres]
fwd[i][tag_pres] += (fwd[j][tag_prev] * a_matrix[tag_prev][tag_pres] )
fwd[i][tag_pres] = fwd[i][tag_pres]* b_matrix[tag_pres][line[j]]
#print i, tag_pres, "fwd", fwd[i][tag_pres]
c[i] = c[i] + fwd[i][tag_pres]
#Scale fwd[i][tag]
#print i, "c[i]", c[i]
c[i] = 1./c[i]
for tag in tag_list:
fwd[i][tag] = (c[i] * fwd[i][tag])
#Final layer computation
x = len(line)+1
fwd[x]=0.
for tag in tag_list:
#Everyone receives summation lol!
fwd[x] += (fwd[x-1][tag] * a_matrix[tag]['f'])
#print "fwd[x]" , fwd[x]
#print "FWD[x]" , x, tag,fwd[x-1][tag], a_matrix[tag]['f'], fwd[x]
return fwd, c
def backward(a_matrix, b_matrix, pi, line, tag_list, c ):
backwd = {}
'''
It is of the format backwd[timestamp][tag]
'''
#line = line[0]
for i, word in enumerate(line):
if word == '':
del line[i]
#print line
#First make the dict of dicts for len of line_list
for i in range(1,len(line)+1):
backwd[i]={}
#Now initialise the T timestamp probs
for tag in tag_list:
backwd[len(line)][tag]=c[len(line)]
#Now run the algorithm
for i in range(len(line)-1, 0, -1):
j = i+1
for tag_pres in tag_list:
backwd[i][tag_pres]=0.
for tag_future in tag_list:
#print fwd[i][tag_pres]
#print fwd[j][tag_prev]
#print a_matrix[tag_prev][tag_pres]
backwd[i][tag_pres] += (backwd[j][tag_future] * a_matrix[tag_pres][tag_future] * b_matrix[tag_future][line[i]] )
#Scale backwd[i][tag] with same scale factor as fwd[i][tag] and we have passed c here!
backwd[i][tag_pres] = (c[i] * backwd[i][tag_pres] )
#Final layer computation, well this actually does not matter!
x = 0
backwd[x]=0.
for tag in tag_list:
#Everyone receives summation lol!
backwd[x] += (backwd[x+1][tag] * pi[tag])
return backwd
def compute_eta(a_matrix, b_matrix, fwd, backwd, tag_list , line):
#Cleanse the data line first
for i, word in enumerate(line):
if word == '':
del line[i]
#INITIALISATION OF ETA dict.
eta={}
for i in range(1, len(line)+1):
eta[i]={}
for tag in tag_list:
eta[i][tag] = {}
#Side algo
#Algorithm computation
for i in range(1, len(line)):
for tag_1 in tag_list:
for tag_2 in tag_list:
#print "eta"
eta[i][tag_1][tag_2] = float(fwd[i][tag_1] * backwd[i+1][tag_2] * a_matrix[tag_1][tag_2] * b_matrix[tag_2][line[i]]) /fwd[len(line)+1]
#print eta[i][tag_1][tag_2]
return eta
def compute_gamma(fwd, backwd, tag_list, line):
#Cleanse the data line first
for i, word in enumerate(line):
if word == '':
del line[i]
#Initialise the gamma values
gamma = {}
for i in range(1, len(line)+1):
gamma[i]={}
#Algorithm computation
for i in range(1, len(line)+1):
for tag in tag_list:
#print "fwd", fwd[i][tag] , backwd[i][tag] , fwd[len(line)+1]
gamma[i][tag] = (fwd[i][tag] * backwd[i][tag]) / fwd[len(line)+1]
return gamma
def expt_compute_eta_and_gamma(a_matrix, b_matrix, fwd, backwd,tag_list, line):
#Cleanse the data line first
for i, word in enumerate(line):
if word == '':
del line[i]
#INITIALISATION OF ETA dict.
eta={}
for i in range(1, len(line)+1):
eta[i]={}
for tag in tag_list:
eta[i][tag] = {}
#Initialise the gamma values
gamma = {}
for i in range(1, len(line)+1):
gamma[i]={}
#Algorithm
for time in range(1, len(line)):
denom=0.
for tag_1 in tag_list:
for tag_2 in tag_list:
denom = denom + (fwd[time][tag_1]*a_matrix[tag_1][tag_2]*b_matrix[tag_2][line[time]]*backwd[time+1][tag_2])
for tag_1 in tag_list:
gamma[time][tag_1]=0.
for tag_2 in tag_list:
eta[time][tag_1][tag_2] = (fwd[time][tag_1]*a_matrix[tag_1][tag_2]*b_matrix[tag_2][line[time]]*backwd[time+1][tag_2])
gamma[time][tag_1] = gamma[time][tag_1] + eta[time][tag_1][tag_2]
#Special case for gamma[T][tag]
denom=0.
for tag in tag_list:
denom = denom + fwd[len(line)][tag]
for tag in tag_list:
gamma[len(line)][tag] = fwd[len(line)][tag]/denom
return eta , gamma
def baum_welch(a_matrix, b_matrix, pi, tag_list, line_list):
#Take the first element of the list now
#line = line_list[0]
for k , line in enumerate(line_list):
if line=='':
continue
print "We are at iteration..." , k
print "Sentence is :" , line
temp_line = line
#Cleanse the data line first
for i, word in enumerate(line):
if word == '':
del line[i]
#Iterate for a fixed no. of steps for one observation here
iterations = 0
while(iterations < 10 ):
print "..........", iterations
#E-STEP
fwd, c = forward(a_matrix, b_matrix, pi, line, tag_list)
backwd = backward(a_matrix, b_matrix, pi, line, tag_list, c)
gamma = compute_gamma(fwd, backwd, tag_list, line)
eta = compute_eta(a_matrix, b_matrix, fwd, backwd, tag_list , line)
#M-STEP
old_a_matrix = copy.deepcopy(a_matrix)
old_b_matrix = copy.deepcopy(b_matrix)
###############################Experimental only#################
#eta, gamma = expt_compute_eta_and_gamma(a_matrix, b_matrix, fwd, backwd,tag_list, line)
#Similar underflow with scaling as well.
##################################################################
for tag_1 in tag_list:
for tag_2 in tag_list:
num=0.
den=0.
for time in range(1, len(line)):
num += eta[time][tag_1][tag_2]
den += gamma[time][tag_1]
for temp_tag in tag_list:
den += eta[time][tag_1][temp_tag]
#print "den is", den
a_matrix[tag_1][tag_2] = num/(den)
for tag in tag_list:
for word in line:
num=0.
den=0.
for time in range(1, len(line)+1):
if line[time-1]==word:
num += gamma[time][tag]
den += gamma[time][tag]
#print "num", num
#print "den", den
b_matrix[tag][word] = num/den
#print "b_maatrix" , tag, word, b_matrix[tag][word]
#print tag,b_matrix[tag]['the']
iterations+=1
a_matrix = normalise_a(a_matrix, tag_list)
b_matrix = normalise_b_internal(b_matrix, tag_list, temp_line)
return a_matrix, b_matrix
def pos_tags():
tag_list = ['NP', 'NN', 'JJ', 'IN', 'VB', 'TO', 'DT', 'PRP', 'RB', 'CC']
return tag_list
def tokenize(filename):
'''
Declare a list of lists for each file and return the list of lists.
'''
line_list = []
'''
Define the regex for compiling only alpha-numeric characters.
'''
regex = re.compile('[\W]+')
#Scraping through the text file
with open(filename, 'r') as f:
for line in f:
line = line.split(' ')
if line[0].startswith("#"):
continue
#Only alpha-numeric characters
for i, word in enumerate(line):
line[i] = re.sub('[^a-zA-Z0-9]+', '', line[i])
#Convert it into lowercase
line[i] = line[i].lower()
#If empty string is processed
if line[i]=='':
del line[i]
#print line
if not line:
continue
line_list.append(line)
return line_list
if __name__ == '__main__':
'''
Brown Corpus used for the following:
Dataset downloaded from http://www.sls.hawaii.edu/bley-vroman/brown_nolines.txt
'''
filename='brown100.txt'
'''
Load the lines in the line_list variable
'''
line_list = tokenize(filename)
'''
Get the tag list of POS tags. The 10 list
'''
tag_list = pos_tags()
a_matrix = init_a(tag_list)
a_matrix = normalise_a(a_matrix, tag_list)
b_matrix = init_b(tag_list, line_list)
#b_matrix = normalise_b(b_matrix, tag_list, line_list)
pi = init_pi_and_normalise(tag_list)
#print pi
#fwd = forward(a_matrix, b_matrix, pi, line_list, tag_list)
#backwd = backward(a_matrix, b_matrix, pi, line_list, tag_list)
#print backwd
#eta = compute_eta(a_matrix, b_matrix, fwd, backwd, tag_list , line_list[0])
#gamma = compute_gamma(fwd, backwd, tag_list, line_list[0])
#print eta
a_matrix, b_matrix = baum_welch(a_matrix, b_matrix, pi, tag_list, line_list)
for dic in b_matrix['NP']:
ordered_b = OrderedDict(sorted(b_matrix.iteritems(), key=lambda x: x[1], reverse=True))
print ordered_b
with open('final_temp_alter__A_B.txt', 'w+') as m:
m.write("A Matrix\n")
for tag_1 in tag_list:
for tag_2 in tag_list:
m.write(tag_1+ "->"+tag_2+" "+str(a_matrix[tag_1][tag_2])+'\n')
m.write("B Matrix\n")
for line in line_list:
for word in line:
for tag in tag_list:
#print tag , "->" ,word ," ", str(b_matrix[tag][word]), '\n'
m.write(tag+ "->"+word+" "+str(b_matrix[tag][word])+'\n')
#print b_matrix