-
Notifications
You must be signed in to change notification settings - Fork 0
/
haarObjectDetection.py
33 lines (25 loc) · 1.08 KB
/
haarObjectDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# in this case, face detection is done using the haar cascade classifier
import cv2
import numpy as np
# we'll load the cascade feature files of face and eyes
faceCascade = cv2.CascadeClassifier('faceHaarCascade.xml')
eyeCascade = cv2.CascadeClassifier('eyeHaarCascade.xml')
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
grayImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # we'll detect in gray image
faces = faceCascade.detectMultiScale(grayImg, 1.3, 5) # Detection function calling
for (x,y,w,h) in faces: # creating the rectangle around the face
# x+w,y+h will be for the total height of the face as detected by the function
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
roiGray = grayImg[y:y+h, x:x+w]
roiColor = img[y:y+h, x:x+w]
eyesFound = eyeCascade.detectMultiScale(roiGray, 1.3, 5)
for(ex,ey,ew,eh) in eyesFound:
cv2.rectangle(roiColor, (ex,ey), (ex+ew,ey+eh), (0,255,0), 2)
cv2.imshow('img', img)
k = cv2.waitKey(30) & 0xff
if k==27:
break
cap.release()
cv2.destroyAllWindows()