-
Notifications
You must be signed in to change notification settings - Fork 0
/
accuracyVnoiseVradius4.m
executable file
·242 lines (178 loc) · 7.65 KB
/
accuracyVnoiseVradius4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
clear
close all
clc
% Monopole Point Source In A Homogeneous Propagation Medium Example
%
% This example provides a simple demonstration of using k-Wave for the
% simulation and detection of a time varying pressure source within a
% two-dimensional homogeneous propagation medium. It builds on the
% Homogeneous Propagation Medium and Recording The Particle Velocity
% examples.
%
% author: Bradley Treeby
% date: 2nd December 2009
% last update: 4th May 2017
%
% This function is part of the k-Wave Toolbox (http://www.k-wave.org)
% Copyright (C) 2009-2017 Bradley Treeby
% This file is part of k-Wave. k-Wave is free software: you can
% redistribute it and/or modify it under the terms of the GNU Lesser
% General Public License as published by the Free Software Foundation,
% either version 3 of the License, or (at your option) any later version.
%
% k-Wave is distributed in the hope that it will be useful, but WITHOUT ANY
% WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
% more details.
%
% You should have received a copy of the GNU Lesser General Public License
% along with k-Wave. If not, see <http://www.gnu.org/licenses/>.
clearvars;
% =========================================================================
% APPARATUS
% =========================================================================
noise_levs = 18:2:20;
source_radius = 0:0.5:8;
iterations = 100;
alg = 1;
Q = 80;
R = 0.15;
radial_units = 8;
T = 1000;
speed = 25;
wavelength_units = 4;
freq = speed/(wavelength_units*R/radial_units);
% freq = 1000;
% radius and angle of the source locations in [r(units),theta(deg)] form
% Source_locations = [1 180; 2 290; 3 220; 4 90; 5 18; 6 24; 7 45; 8 180];
% Source_locations = [6 180];
% =========================================================================
% SIMULATION
% =========================================================================
% create the computational grid
Nx = 128; % number of grid points in the x (row) direction
Ny = 128; % number of grid points in the y (column) direction
dx = (2*R+0.02)/128; % grid point spacing in the x direction [m]
dy = dx; % grid point spacing in the y direction [m]
kgrid = kWaveGrid(Nx, dx, Ny, dy);
% define the properties of the propagation medium
medium.sound_speed = speed; % [m/s]
medium.alpha_coeff = 0; % [dB/(MHz^y cm)]
medium.alpha_power = 0;
% create the time array
kgrid.makeTime(medium.sound_speed);
% t_end = 9;
% kgrid.t_array = makeTime(kgrid, medium.sound_speed, [], t_end);
kgrid.Nt = T;
for radi = 1:length(source_radius)
% define a the source points by setting 1 value at corresponding
% coordinates of the p_mask
source.p_mask = zeros(Nx, Ny);
Source_locations = [source_radius(radi) 180];
for loc=1:size(Source_locations,1)
% introducing a source point in the p_mask grid
r = Source_locations(loc,1)*R/radial_units;
t = Source_locations(loc,2)*pi/180;
[x,y] = pol2cart(t,r);
xind = round((x/dx)+Nx/2);
yind = round((y/dy)+Ny/2);
source.p_mask(xind,yind) = 1;
% define a time varying sinusoidal source
source_freq = freq; % [Hz]
source_mag = 5; % [Pa]
s = source_mag * sin(2 * pi * source_freq * kgrid.t_array);
% s = awgn(s,10);
% s = source_mag*awgn(zeros(1,length(kgrid.t_array)),10);
source.p(loc,:) = filterTimeSeries(kgrid, medium, s);
end
% define a centered circular sensor
sensor_radius = R; % [m]
num_sensor_points = 80;
sensor.mask = makeCartCircle(sensor_radius, num_sensor_points);
% define the acoustic parameters to record
sensor.record = {'p', 'p_final'};
% run the simulation
sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);
% the sensor location is stored in sensor.mask in their x and y
% coordinates. These are converted to the polar form.
[theta,~] = cart2pol(sensor.mask(1,:),sensor.mask(2,:));
% actual location of the source
[x_loc,y_loc] = find(source.p_mask);
x_loc = (x_loc-Nx/2)*dx;
y_loc = (y_loc-Ny/2)*dy;
% wavenumber k and the maximum mode M
k = 2*pi*source_freq/medium.sound_speed;
m = ceil(11/9*k*R);
ind1 = repmat(-m:m,num_sensor_points,1);
ind2 = repmat(theta',1,2*m+1);
% dis = zeros(1,length(noise_levs));
disp("src_radius: "+source_radius(radi)+" units");
for n=1:length(noise_levs)
distance = zeros(1,iterations);
disp("snr: "+noise_levs(n)+" db");
for iter=1:iterations
% the sensor readings
z = sensor_data.p;
% save("Zdata/Z_rad"+source_radius(radi)+"u_freq"+freq+"Hz.mat",'z');
z = awgn(z,noise_levs(n));
if(alg==1)
xi = exp(1i*ind1.*ind2);
% Taking the inverse of H(sensor radial component) if the condition number
% is small enough. Took a threshold randomly
if(cond(diag(besselh(-m:m,1,k*R))) < 100)
Hinv = diag(besselh(-m:m,1,k*R).^-1);
else
Hinv = 1;
end
% the spatial fourier coefficients
alpha = Hinv * 4/(num_sensor_points*1i)*ctranspose(xi)*z;
elseif(alg==2)
gamma = besselh(ind1,1,k*R).*exp(1i*ind1.*ind2);
% computing alpha
alpha = 4/(1i)*pinv(gamma)*z;
end
% the covariance of the fourier coefficients
Ra = 1/T*alpha*ctranspose(alpha);
% the polar coordinates vectors, y and phi
Y = linspace(0, R, 200);
P = linspace(0, 2*pi, 180);
[P_grid,Y_grid] = meshgrid(P,Y);
% initialising the MV spectrum matrix
Z = zeros(length(Y),length(P));
RaI = pinv(Ra);
for i=1:length(Y)
for j=1:length(P)
c = besselj(-m:m,k*Y(i)).*exp(1i*(-m:m)*P(j));
Z(i,j) = (c*RaI*ctranspose(c))^-1;
end
end
[A,B,C] = pol2cart(P_grid,Y_grid,Z);
% predicted location of the source
[xm,ym] = find(abs(C) == max(max(abs(C))));
xmax = A(xm(1),ym(1));
ymax = B(xm(1),ym(1));
distance(iter) = sqrt((xmax-x_loc)^2 + (ymax-y_loc)^2);
disp("iter: "+iter);
save("accVnoiseVradius/MV_iter"+iter+"_rad"+source_radius(radi)+"u_snr"+noise_levs(n)+"db.mat",'C');
end
save("accVnoiseVradius/dist_rad"+source_radius(radi)+"u_snr"+noise_levs(n)+"db.mat",'distance');
end
% plot_mat = [noise_levs; dis];
% save("accVnoiseVradius/plot_rad"+source_radius(radi)+".mat",'plot_mat');
% figure(1);
% fig = imagesc(kgrid.x_vec, kgrid.y_vec, flip((sensor_data.p_final + source.p_mask + cart2grid(kgrid, sensor.mask))',1), [-1, 1]);
% colormap(getColorMap);
% ylabel('y-position [m]');
% xlabel('x-position [m]');
% grid on;
% title(source_radius(radi)+"units");
% axis image;
% saveas(fig,"accVnoiseVradius/fig_"+source_radius(radi)+"_units.fig");
%
% figure(2);
% fig = plot(noise_levs,dis);
% xlabel('noise(db)');
% ylabel('dis');
% title(source_radius(radi)+"units");
% saveas(fig,"accVnoiseVradius/plot_"+source_radius(radi)+"_units.fig");
end