-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapi_streamlit.py
69 lines (51 loc) · 2.3 KB
/
api_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
import cv2
import numpy as np
import gdown # To download the model from Google Drive
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
# Function to download the model from Google Drive
@st.cache(allow_output_mutation=True)
def load_cached_model(file_id, output_path):
gdown.download(f"https://drive.google.com/uc?id={file_id}", output_path, quiet=False)
model = load_model(output_path)
return model
def predict_and_display_camera(model, base_model):
cap = cv2.VideoCapture(0)
st.write("Live Stream:")
stream = st.empty()
while True:
ret, frame = cap.read()
if not ret:
break
resized_frame = cv2.resize(frame, (224, 224))
preprocessed_frame = img_to_array(resized_frame)
preprocessed_frame = np.expand_dims(preprocessed_frame, axis=0)
preprocessed_frame = preprocess_input(preprocessed_frame)
features = base_model.predict(preprocessed_frame)
features_flatten = features.reshape(1, -1)
prediction = model.predict(features_flatten)[0]
class_label = np.argmax(prediction)
class_prob = prediction[class_label]
label = "Harassment" if class_label == 1 else "Non-Harassment"
prob_text = f"{label} ({class_prob:.2f})"
# Overlay prediction on the frame
cv2.putText(frame, prob_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Display the processed frame with overlay using Streamlit's st.image
stream.image(frame, channels="BGR", caption="Live Prediction")
cap.release()
def main():
st.title("Live Harassment Detection")
# Google Drive file ID
file_id = "1GP2IdE-mPdQ9D3ouDIqbIU-3gl26Kgf2"
# Path to where the model will be downloaded
model_path = "weight.hdf5"
# Download and cache the model
model = load_cached_model(file_id, model_path)
base_model = VGG16(weights='imagenet', include_top=False)
st.write("Press the button to start prediction:")
if st.button("Start Prediction"):
predict_and_display_camera(model, base_model)
if __name__ == "__main__":
main()