forked from dusty-nv/jetson-reinforcement
-
Notifications
You must be signed in to change notification settings - Fork 0
/
catch.cpp
286 lines (224 loc) · 6.51 KB
/
catch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*
* 1D deepRL example
*/
#include "deepRL.h"
#include "commandLine.h"
#include "rand.h"
#include <stdlib.h>
#include <signal.h>
#include <time.h>
// Define DQN API settings
#define DEFAULT_GAME_WIDTH 64
#define DEFAULT_GAME_HEIGHT 64
#define NUM_CHANNELS 1
#define OPTIMIZER "RMSprop"
#define LEARNING_RATE 0.01f
#define REPLAY_MEMORY 10000
#define BATCH_SIZE 32
#define GAMMA 0.9f
#define EPS_START 0.9f
#define EPS_END 0.05f
#define EPS_DECAY 200
#define USE_LSTM true
#define LSTM_SIZE 256
#define ALLOW_RANDOM true
#define DEBUG_DQN false
// Set enviromoment variables
#define BALL_SIZE 8
#define BALL_SIZE2 (BALL_SIZE/2)
#define PLAY_SIZE 16
#define PLAY_SIZE2 (PLAY_SIZE/2)
// Set game history
#define GAME_HISTORY 20
bool gameHistory[GAME_HISTORY];
int gameHistoryIdx = 0;
int gameHistoryMax = 0;
// Agent actions
enum catchAction
{
ACTION_STAY = 0,
ACTION_LEFT = 1,
ACTION_RIGHT = 2,
NUM_ACTIONS
};
// Action enum to string function
static const char* catchStr( int action )
{
if( action == 0 ) return "STAY";
else if( action == 1 ) return "LEFT";
else if( action == 2 ) return "RIGHT";
else return "NULL";
}
bool quit_signal = false;
// Function to catch interupt and quit program
void sig_handler(int signo)
{
if( signo == SIGINT )
{
printf("received SIGINT\n");
quit_signal = true;
}
}
int main( int argc, char** argv )
{
printf("deepRL-catch\n\n");
// Catch quit signal to stop game
if( signal(SIGINT, sig_handler) == SIG_ERR )
printf("\ncan't catch SIGINT\n");
// Seed rng
srand_time();
// Parse command line
commandLine cmdLine(argc, argv);
const int gameWidth = cmdLine.GetInt("width", DEFAULT_GAME_WIDTH);
const int gameHeight = cmdLine.GetInt("height", DEFAULT_GAME_HEIGHT);
const bool render = cmdLine.GetFlag("render");
// Create reinforcement learner agent in pyTorch using API
dqnAgent* agent = dqnAgent::Create(gameWidth, gameHeight, NUM_CHANNELS, NUM_ACTIONS,
OPTIMIZER, LEARNING_RATE, REPLAY_MEMORY, BATCH_SIZE,
GAMMA, EPS_START, EPS_END, EPS_DECAY,
USE_LSTM, LSTM_SIZE, ALLOW_RANDOM, DEBUG_DQN);
// Verify agent creation
if( !agent )
{
printf("[deepRL] failed to create deepRL instance %ux%u %u", gameWidth, gameHeight, NUM_ACTIONS);
return 0;
}
// Allocate memory for the game input
Tensor* input_state = Tensor::Alloc(gameWidth, gameHeight, NUM_CHANNELS);
// Check for agent creation
if( !input_state )
{
printf("[deepRL] failed to allocate input tensor with %ux%xu elements", gameWidth, gameHeight);
return 0;
}
// Setup game state
int ball_x = rand(0, gameWidth-1);
int ball_y = gameHeight - 1;
int play_x = (gameWidth / 2) + 1;
// Set initial state for accuracy
int episodes_won = 0;
int episode = 1;
// Game loop
while( !quit_signal )
{
// Update the playing field
for( int y=0; y < gameHeight; y++ )
{
for( int x=0; x < gameWidth; x++ )
{
float cell_value = 0.0f;
if( (x >= ball_x - BALL_SIZE2) && (x <= ball_x + BALL_SIZE2) &&
(y >= ball_y - BALL_SIZE2) && (y <= ball_y + BALL_SIZE2) )
cell_value = 1.0f;
else if( (x >= play_x - PLAY_SIZE2) && (x <= play_x + PLAY_SIZE2) &&
(y == 0) )
cell_value = 100.0f;
for( int c=0; c < NUM_CHANNELS; c++ )
input_state->cpuPtr[c*gameWidth*gameHeight+y*gameWidth+x] = cell_value;
}
}
// Ask the AI agent for their action
int action = ACTION_STAY;
// Get next action
if( !agent->NextAction(input_state, &action) )
{
printf("[deepRL] agent->NextAction() failed.\n");
return 0;
}
//printf("RL action: %i %s\n", action, actionStr(action));
const int prevDist = abs(play_x - ball_x);
// Apply the agent's action, without going off-screen
if( action == ACTION_LEFT && (play_x - PLAY_SIZE2) > 0 )
play_x--;
else if( action == ACTION_RIGHT && (play_x + PLAY_SIZE2) < (gameWidth-1) )
play_x++;
const int currDist = abs(play_x - ball_x);
// Advance the simulation (make the ball fall)
ball_y--;
// print screen
if( render )
{
printf("\n");
for( int y=0; y < gameHeight; y++ )
{
printf("|");
for( int x=0; x < gameWidth; x++ )
{
if( x == ball_x && y == ball_y )
printf("*");
else if( x == play_x && y == 0 )
printf("-");
else
printf(" ");
}
printf("|\n");
}
}
// Compute reward
float reward = 0.0f;
if( currDist == 0 )
reward = 1.0f;
else if( currDist > prevDist )
reward = -1.0f;
else if( currDist < prevDist )
reward = 1.0f;
else if( currDist == prevDist )
reward = 0.0f;
// If the ball has reached the bottom, train & reset randomly
bool end_episode = false;
if( ball_y <= 0 )
{
bool ball_overlap = false;
// Detect if the player paddle is overlapping with the ball
for( int i=0; i < BALL_SIZE; i++ )
{
const int p = ball_x - BALL_SIZE2 + i;
if( p >= play_x - PLAY_SIZE2 && p <= play_x + PLAY_SIZE2 )
{
ball_overlap = true;
break;
}
}
// If the agent caught the ball, give it a reward
if( ball_overlap )
{
reward = 1.0;
episodes_won++;
gameHistory[gameHistoryIdx] = true;
printf("WON! episode %i\n", episode);
}
else
{
gameHistory[gameHistoryIdx] = false;
printf("LOST episode %i\n", episode);
reward = -1.0f;
}
// Print out statistics for tracking agent learning progress
printf("%03i for %03i (%0.4f) ", episodes_won, episode, float(episodes_won)/float(episode));
if( episode >= GAME_HISTORY )
{
uint32_t historyWins = 0;
for( uint32_t n=0; n < GAME_HISTORY; n++ )
{
if( gameHistory[n] )
historyWins++;
}
if( historyWins > gameHistoryMax )
gameHistoryMax = historyWins;
printf("%02u of last %u (%0.2f) (max=%0.2f)", historyWins, GAME_HISTORY, float(historyWins)/float(GAME_HISTORY), float(gameHistoryMax)/float(GAME_HISTORY));
}
printf("\n");
gameHistoryIdx = (gameHistoryIdx + 1) % GAME_HISTORY;
episode++;
// Reset the game for next episode
ball_x = rand(0, gameWidth-1);
ball_y = gameHeight - 1;
play_x = (gameWidth / 2) + 1;
// Flag as end of episode
end_episode = true;
}
if( !agent->NextReward(reward, end_episode) )
printf("[deepRL] agent->NextReward() failed\n");
}
return 0;
}