forked from araffin/rl-baselines-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenjoy.py
181 lines (152 loc) · 7.56 KB
/
enjoy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import custom_gym_envs
import os
import warnings
import sys
import pkg_resources
import importlib
# For pybullet envs
warnings.filterwarnings("ignore")
import gym
try:
import pybullet_envs
except ImportError:
pybullet_envs = None
import numpy as np
try:
import highway_env
except ImportError:
highway_env = None
import stable_baselines
from stable_baselines.common import set_global_seeds
from stable_baselines.common.vec_env import VecNormalize, VecFrameStack, VecEnv
from utils import ALGOS, create_test_env, get_latest_run_id, get_saved_hyperparams
# Fix for breaking change in v2.6.0
if pkg_resources.get_distribution("stable_baselines").version >= "2.6.0":
sys.modules['stable_baselines.ddpg.memory'] = stable_baselines.deepq.replay_buffer
stable_baselines.deepq.replay_buffer.Memory = stable_baselines.deepq.replay_buffer.ReplayBuffer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--env', help='environment ID', type=str, default='CartPole-v1')
parser.add_argument('-f', '--folder', help='Log folder', type=str, default='trained_agents')
parser.add_argument('--algo', help='RL Algorithm', default='ppo2',
type=str, required=False, choices=list(ALGOS.keys()))
parser.add_argument('-n', '--n-timesteps', help='number of timesteps', default=1000,
type=int)
parser.add_argument('--n-envs', help='number of environments', default=1,
type=int)
parser.add_argument('--exp-id', help='Experiment ID (default: -1, no exp folder, 0: latest)', default=-1,
type=int)
parser.add_argument('--verbose', help='Verbose mode (0: no output, 1: INFO)', default=1,
type=int)
parser.add_argument('--no-render', action='store_true', default=False,
help='Do not render the environment (useful for tests)')
parser.add_argument('--deterministic', action='store_true', default=False,
help='Use deterministic actions')
parser.add_argument('--stochastic', action='store_true', default=False,
help='Use stochastic actions (for DDPG/DQN/SAC)')
parser.add_argument('--norm-reward', action='store_true', default=False,
help='Normalize reward if applicable (trained with VecNormalize)')
parser.add_argument('--seed', help='Random generator seed', type=int, default=0)
parser.add_argument('--reward-log', help='Where to log reward', default='', type=str)
parser.add_argument('--gym-packages', type=str, nargs='+', default=[], help='Additional external Gym environemnt package modules to import (e.g. gym_minigrid)')
args = parser.parse_args()
# Going through custom gym packages to let them register in the global registory
for env_module in args.gym_packages:
importlib.import_module(env_module)
env_id = args.env
algo = args.algo
folder = args.folder
if args.exp_id == 0:
args.exp_id = get_latest_run_id(os.path.join(folder, algo), env_id)
print('Loading latest experiment, id={}'.format(args.exp_id))
# Sanity checks
if args.exp_id > 0:
log_path = os.path.join(folder, algo, '{}_{}'.format(env_id, args.exp_id))
else:
log_path = os.path.join(folder, algo)
model_path = "{}/{}.pkl".format(log_path, env_id)
assert os.path.isdir(log_path), "The {} folder was not found".format(log_path)
assert os.path.isfile(model_path), "No model found for {} on {}, path: {}".format(algo, env_id, model_path)
if algo in ['dqn', 'ddpg', 'sac']:
args.n_envs = 1
set_global_seeds(args.seed)
is_atari = 'NoFrameskip' in env_id
stats_path = os.path.join(log_path, env_id)
hyperparams, stats_path = get_saved_hyperparams(stats_path, norm_reward=args.norm_reward, test_mode=True)
log_dir = args.reward_log if args.reward_log != '' else None
env = create_test_env(env_id, n_envs=args.n_envs, is_atari=is_atari,
stats_path=stats_path, seed=args.seed, log_dir=log_dir,
should_render=not args.no_render,
hyperparams=hyperparams)
# ACER raises errors because the environment passed must have
# the same number of environments as the model was trained on.
load_env = None if algo == 'acer' else env
model = ALGOS[algo].load(model_path, env=load_env)
obs = env.reset()
# Force deterministic for DQN, DDPG, SAC and HER (that is a wrapper around)
deterministic = args.deterministic or algo in ['dqn', 'ddpg', 'sac', 'her'] and not args.stochastic
episode_reward = 0.0
episode_rewards = []
ep_len = 0
# For HER, monitor success rate
successes = []
for _ in range(args.n_timesteps):
action, _ = model.predict(obs, deterministic=deterministic)
# Random Agent
# action = [env.action_space.sample()]
# Clip Action to avoid out of bound errors
if isinstance(env.action_space, gym.spaces.Box):
action = np.clip(action, env.action_space.low, env.action_space.high)
obs, reward, done, infos = env.step(action)
# Useful for gym FetchEnvs where they don't send the done flag
if 'is_success' in infos[0]:
if infos[0]['is_success']:
done = True
if not args.no_render:
env.render('human')
episode_reward += reward[0]
ep_len += 1
if args.n_envs == 1:
# For atari the return reward is not the atari score
# so we have to get it from the infos dict
if is_atari and infos is not None and args.verbose >= 1:
episode_infos = infos[0].get('episode')
if episode_infos is not None:
print("Atari Episode Score: {:.2f}".format(episode_infos['r']))
print("Atari Episode Length", episode_infos['l'])
if done and not is_atari and args.verbose > 0:
# NOTE: for env using VecNormalize, the mean reward
# is a normalized reward when `--norm_reward` flag is passed
print("Episode Reward: {:.2f}".format(episode_reward))
print("Episode Length", ep_len)
episode_rewards.append(episode_reward)
episode_reward = 0.0
ep_len = 0
# Reset also when the goal is achieved when using HER
if done or infos[0].get('is_success', False):
if args.algo == 'her' and args.verbose > 1:
print("Success?", infos[0].get('is_success', False))
# Alternatively, you can add a check to wait for the end of the episode
# if done:
obs = env.reset()
if args.algo == 'her':
successes.append(infos[0].get('is_success', False))
episode_reward, ep_len = 0.0, 0
if args.verbose > 0 and len(successes) > 0:
print("Success rate: {:.2f}%".format(100 * np.mean(successes)))
if args.verbose > 0 and len(episode_rewards) > 0:
print("Mean reward: {:.2f}".format(np.mean(episode_rewards)))
# Workaround for https://github.com/openai/gym/issues/893
if not args.no_render:
if args.n_envs == 1 and 'Bullet' not in env_id and not is_atari and isinstance(env, VecEnv):
# DummyVecEnv
# Unwrap env
while isinstance(env, VecNormalize) or isinstance(env, VecFrameStack):
env = env.venv
env.envs[0].env.close()
else:
# SubprocVecEnv
env.close()
if __name__ == '__main__':
main()