From dcaaf35d6f8e557f2fee932be54471a5c7147b43 Mon Sep 17 00:00:00 2001 From: Gavin Simpson Date: Sat, 14 Dec 2024 18:00:20 +0100 Subject: [PATCH] bump version, document() --- DESCRIPTION | 5 +++-- NAMESPACE | 4 ++++ NEWS.md | 4 +++- 3 files changed, 10 insertions(+), 3 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 66c6e3fb..e34a835c 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,5 +1,5 @@ Package: gratia -Version: 0.9.2.9013 +Version: 0.9.2.9014 Title: Graceful 'ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'mgcv' Authors@R: c(person(given = "Gavin L.", family = "Simpson", email = "ucfagls@gmail.com", @@ -33,7 +33,8 @@ Imports: cli, nlme, ggokabeito, - withr + withr, + scales Suggests: gamm4, lme4, diff --git a/NAMESPACE b/NAMESPACE index 1729abd3..a3e2e1bc 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -418,7 +418,9 @@ export(variance_comp) export(vars_from_label) export(which_smooths) export(worm_plot) +importFrom(cli,format_error) importFrom(cli,pluralize) +importFrom(cli,qty) importFrom(cli,style_dim) importFrom(cli,symbol) importFrom(dplyr,"%>%") @@ -533,6 +535,7 @@ importFrom(rlang,"!!") importFrom(rlang,"%||%") importFrom(rlang,":=") importFrom(rlang,.data) +importFrom(rlang,abort) importFrom(rlang,dots_list) importFrom(rlang,enexpr) importFrom(rlang,enquo) @@ -546,6 +549,7 @@ importFrom(rlang,has_name) importFrom(rlang,inject) importFrom(rlang,parse_expr) importFrom(rlang,set_names) +importFrom(scales,ordinal_format) importFrom(stats,IQR) importFrom(stats,as.formula) importFrom(stats,binomial) diff --git a/NEWS.md b/NEWS.md index 5e294a0a..34fb832e 100644 --- a/NEWS.md +++ b/NEWS.md @@ -4,7 +4,9 @@ * `conditional_values()` and its `draw()` method compute and plot predictions from a fitted GAM that are conditional on one or more covariates. The - function is a wrapper around `fitted_values()` but allows the user simple ways to specify which covariates to condition on and at what values those covariates should take. It provides similar functionality to + function is a wrapper around `fitted_values()` but allows the user simple ways + to specify which covariates to condition on and at what values those + covariates should take. It provides similar functionality to `marginaleffects::plot_predictions()`, but is simpler. See #300. * `penalty()` and `basis()` can now allow the smooth to be reparameterized such