-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_HIV_2007_stats.py
146 lines (137 loc) · 6.44 KB
/
data_HIV_2007_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pandas as pd
import numpy as np
from three_way_epistasis import check_for_epistasis
__author__ = '@gavruskin'
# w_000 = w[0], w_001 = w[1], w_010 = w[2], w_100 = w[3], w_011 = w[4], w_101 = w[5], w_110 = w[6], w_111 = w[7]
# The values below are from Table 6.2 in BPS
minim = [0.1917, 0.5344, -0.3355, 0.4771, 1.0000, 0.3010, 0.6021, -0.4771]
qu1 = [1.4770, 0.6990, 1.1440, 1.3470, 1.2500, 0.8673, 1.1610, 0.9472]
median = [1.6410, 1.1880, 1.2960, 1.4650, 1.5150, 1.3420, 1.3700, 1.1790]
mean = [1.5800, 1.1950, 1.1330, 1.4410, 1.4300, 1.2320, 1.2940, 1.0450]
qu3 = [1.7910, 1.7710, 1.4870, 1.7890, 1.6360, 1.5840, 1.5370, 1.3850]
maxim = [2.0530, 1.7850, 1.5310, 1.8750, 1.7240, 1.8870, 1.6920, 1.7900]
# check_for_epistasis(minim)
# check_for_epistasis(qu1)
# check_for_epistasis(median)
# check_for_epistasis(mean, True)
# check_for_epistasis(qu3)
# check_for_epistasis(maxim)
#
#
# minim.reverse()
# check_for_epistasis(minim)
def get_mean_fitness(data_file, mutations, sites, mean_type=""): # Default mean_type returns all possible combinations
# of fitness values for the fist n values where n is the min number of fitness measurements over all genotypes.
# This should not be used!
sites = [0] + sites # This is specific to the data file. Column 0 contains fitness, column 1 names.
values = pd.read_csv(data_file, usecols=sites)
values.iloc[:, 0] = np.log10(values.iloc[:, 0])
size = len(values.iloc[:, 1])
f000 = []
f001 = []
f010 = []
f100 = []
f011 = []
f101 = []
f110 = []
f111 = []
for s in range(size):
if (values.iloc[s, 1] == mutations[0][0]) & (values.iloc[s, 2] == mutations[1][0]) &\
(values.iloc[s, 3] == mutations[2][0]):
f000.append(values.iloc[s, 0])
elif (values.iloc[s, 1] == mutations[0][0]) & (values.iloc[s, 2] == mutations[1][0]) &\
(values.iloc[s, 3] == mutations[2][1]):
f001.append(values.iloc[s, 0])
elif (values.iloc[s, 1] == mutations[0][0]) & (values.iloc[s, 2] == mutations[1][1]) &\
(values.iloc[s, 3] == mutations[2][0]):
f010.append(values.iloc[s, 0])
elif (values.iloc[s, 1] == mutations[0][1]) & (values.iloc[s, 2] == mutations[1][0]) &\
(values.iloc[s, 3] == mutations[2][0]):
f100.append(values.iloc[s, 0])
elif (values.iloc[s, 1] == mutations[0][0]) & (values.iloc[s, 2] == mutations[1][1]) &\
(values.iloc[s, 3] == mutations[2][1]):
f011.append(values.iloc[s, 0])
elif (values.iloc[s, 1] == mutations[0][1]) & (values.iloc[s, 2] == mutations[1][0]) &\
(values.iloc[s, 3] == mutations[2][1]):
f101.append(values.iloc[s, 0])
elif (values.iloc[s, 1] == mutations[0][1]) & (values.iloc[s, 2] == mutations[1][1]) &\
(values.iloc[s, 3] == mutations[2][0]):
f110.append(values.iloc[s, 0])
elif (values.iloc[s, 1] == mutations[0][1]) & (values.iloc[s, 2] == mutations[1][1]) &\
(values.iloc[s, 3] == mutations[2][1]):
f111.append(values.iloc[s, 0])
if mean_type == "mean":
w = [np.mean(f000), np.mean(f001), np.mean(f010), np.mean(f100), np.mean(f011), np.mean(f101),
np.mean(f110), np.mean(f111)]
return w
elif mean_type == "max":
w = [np.max(f000), np.max(f001), np.max(f010), np.max(f100), np.max(f011), np.max(f101),
np.max(f110), np.max(f111)]
return w
elif mean_type == "min":
w = [np.min(f000), np.min(f001), np.min(f010), np.min(f100), np.min(f011), np.min(f101),
np.min(f110), np.min(f111)]
return w
elif mean_type == "median":
w = [np.median(f000), np.median(f001), np.median(f010), np.median(f100), np.median(f011),
np.median(f101), np.median(f110), np.median(f111)]
return w
elif mean_type == "qu1":
w = [np.percentile(f000, 25), np.percentile(f001, 25), np.percentile(f010, 25),
np.percentile(f100, 25), np.percentile(f011, 25), np.percentile(f101, 25),
np.percentile(f110, 25), np.percentile(f111, 25)]
return w
elif mean_type == "qu3":
w = [np.percentile(f000, 75), np.percentile(f001, 75), np.percentile(f010, 75),
np.percentile(f100, 75), np.percentile(f011, 75), np.percentile(f101, 75),
np.percentile(f110, 75), np.percentile(f111, 75)]
return w
f_min_length = min(len(f000), len(f001), len(f010), len(f100), len(f011), len(f101), len(f110), len(f111))
f000_sorted = sorted(f000)
f000_sorted = f000_sorted[0:f_min_length]
f001_sorted = sorted(f001)
f001_sorted = f001_sorted[0:f_min_length]
f010_sorted = sorted(f010)
f010_sorted = f010_sorted[0:f_min_length]
f100_sorted = sorted(f100)
f100_sorted = f100_sorted[0:f_min_length]
f011_sorted = sorted(f011)
f011_sorted = f011_sorted[0:f_min_length]
f101_sorted = sorted(f101)
f101_sorted = f101_sorted[0:f_min_length]
f110_sorted = sorted(f110)
f110_sorted = f110_sorted[0:f_min_length]
f111_sorted = sorted(f111)
f111_sorted = f111_sorted[0:f_min_length]
w_list = []
for f0 in f000_sorted:
for f1 in f001_sorted:
for f2 in f010_sorted:
for f3 in f100_sorted:
for f4 in f011_sorted:
for f5 in f101_sorted:
for f6 in f110_sorted:
for f7 in f111_sorted:
if len({f0, f1, f2, f3, f4, f5, f6, f7}) == 8: # To skip missing data.
w_list.append([f0, f1, f2, f3, f4, f5, f6, f7])
return w_list
HIV_data_file = "2007_HIV_data.csv"
mutations_BPS = [["L", "M"], # mutations: L to M, M to V, t to Y
["M", "V"],
["t", "Y"]]
sites_BPS = [88, 244, 275] # sites: PRO L90M, RT M184V, RT T215Y
list_with_five_variants = get_mean_fitness(HIV_data_file, mutations_BPS, sites_BPS)
total_num_genotypes = len(list_with_five_variants)
positive_epi_num = 0
negative_epi_num = 0
non_informative_num = 0
for ranking in list_with_five_variants:
epi_pair = check_for_epistasis(ranking)
if epi_pair[0]:
positive_epi_num += 1
elif epi_pair[1]:
negative_epi_num += 1
elif not epi_pair[0] and not epi_pair[1]:
non_informative_num += 1
analysis_output = [positive_epi_num, negative_epi_num, non_informative_num, total_num_genotypes]
print(analysis_output)