-
Notifications
You must be signed in to change notification settings - Fork 1
/
preprocess_test.py
271 lines (235 loc) · 7.97 KB
/
preprocess_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/python
import os
import pickle
import array
import datetime
def preprocess1():
"""
sequence through all orders data, convert order info to:
driver_id - numeric value
passenger_id - numeric value
start_district - numeric value
dest_district - numeric value
Price - numeric value
Day/Timezone - "DDDTTT" where DDD is days from beginning of year,
TTT is 1-144 representing the ten-min timeslot
Date = format ie "2016-01-23"
create and store driver, passenger, district index files as dicts
Preprocess:
- create driver, passenger, district dictionaries to map id's to numbers starting at 0
- read from order file and create gap file with gaps per district/date/timeslot
- date will be converted to day in year
- extra data to store:
- day of week, demand, supply, gap, number of fares out of district, number of fares into district,
road_congestion for 4 most congested roads if available, weather, temperature, pollution
"""
orders_dir = "/home/gordon/ditech/season_1/test_set_1/order_data/"
weather_dir = "/home/gordon/ditech/season_1/test_set_1/weather_data/"
traffic_dir = "/home/gordon/ditech/season_1/test_set_1/traffic_data/"
districts_file = "/home/gordon/ditech/season_1/test_set_1/cluster_map/cluster_map"
poi_file = "/home/gordon/ditech/season_1/test_set_1/poi_data/poi_data"
orders_out = "test_orders"
if os.path.exists("test_drivers"):
driver_dict = pickle.load(open("test_drivers", "r+"))
else:
driver_dict = {"NULL": "NULL"}
if os.path.exists("test_passengers"):
passenger_dict = pickle.load(open("test_passengers", "r+"))
else:
passenger_dict = {}
#create districts file which maps distric string to shorter value using cluster map
if os.path.exists("test_districts"):
dist_dict = pickle.load(open("test_districts", "r+"))
else:
dist_dict = get_districts(districts_file)
# process weather info
if os.path.exists("test_weather"):
weather_dict = pickle.load(open("test_weather", "r"))
else:
weather_dict = process_weather(weather_dir)
# process traffic jam info
if os.path.exists("test_traffic"):
traffic_dict = pickle.load(open("test_traffic", "r"))
else:
traffic_dict = process_traffic(traffic_dir, dist_dict)
#process poi info
if os.path.exists("test_pois"):
poi_dict = pickle.load(open("test_pois", "r"))
else:
poi_dict = get_poi(poi_file, dist_dict)
# process orders file
if not os.path.exists(orders_out):
process_orders(orders_dir, orders_out, driver_dict, passenger_dict, dist_dict)
# write dict files
pickle.dump(driver_dict, open( "test_drivers", "w" ))
pickle.dump(passenger_dict, open( "test_passengers", "w" ))
pickle.dump(dist_dict, open( "test_districts", "w" ))
pickle.dump(poi_dict, open( "test_pois", "w" ))
pickle.dump(weather_dict, open( "test_weather", "w" ))
pickle.dump(traffic_dict, open( "test_traffic", "w" ))
def process_orders(orders_dir, orders_out, driver_dict, passenger_dict, dist_dict):
driver_index = 0; passenger_index = 0; district_index = 0;
orders_files = os.listdir(orders_dir)
print " order files %s" % orders_files
fout = open(orders_out, 'w')
timeslots_cnt = array.array('i', [0]*145)
timeslots_null_cnt = array.array('i', [0]*145)
orders_tot = 0
for ofile in orders_files:
if ofile.startswith('order'):
f = open(orders_dir + ofile, 'r')
print "Processing file: %s" % ofile
orders_cnt = 0
for line in f:
orders_cnt += 1
fields = line.split()
driver = fields[1]
passenger = fields[2]
start_district = fields[3]
dest_district = fields[4]
price = fields[5]
date = fields[6]
time = fields[7]
# create dict keys
# driver
if not driver_dict.has_key(fields[1]):
driver_out = str(driver_index)
driver_dict[fields[1]] = driver_out
driver_index += 1
else:
driver_out = driver_dict[fields[1]]
#passenger
if not passenger_dict.has_key(fields[2]):
passenger_out = str(passenger_index)
passenger_dict[fields[2]] = passenger_out
passenger_index += 1
else:
passenger_out = passenger_dict[fields[2]]
# start dist
if not dist_dict.has_key(fields[3]):
start_district_out = str(district_index)
dist_dict[fields[3]] = start_district_out
district_index += 1
else:
start_district_out = dist_dict[fields[3]]
# dest dist
if not dist_dict.has_key(fields[4]):
dest_district_out = str(district_index)
dist_dict[fields[4]] = dest_district_out
district_index += 1
else:
dest_district_out = dist_dict[fields[4]]
# timeslot (0-143)
timeslot_out = get_timeslot(fields[7])
slot = int(timeslot_out)
timeslots_cnt[slot] += 1
# count NULL's by timeslot)
if driver == "NULL":
timeslots_null_cnt[slot] += 1
# day in year
day = str(day_in_year(date))
# day of week
dow = str(day_of_week(date))
# write fields
str_out = driver_out + "," + passenger_out + "," + \
start_district_out + "," + dest_district_out + "," + \
price + "," + day + "," + dow + "," + timeslot_out + "," \
+ date + ","
fout.write(str_out)
fout.write("\n")
f.close()
print "done, orders: %d" % orders_cnt
orders_tot += orders_cnt
print "done, orders: %d drivers: %d passengers: %d districts: %d" % \
(orders_tot, driver_index, passenger_index, district_index)
for i in range(len(timeslots_cnt)):
print i, timeslots_cnt[i], timeslots_null_cnt[i]
#close files
fout.close()
def process_traffic(d, dist_dict):
print "processing traffic file"
traffic_files = os.listdir(d)
dic = {}
for file in traffic_files:
f = open(d + file, "r")
for line in f:
fields = line.split("\t")
district = dist_dict[fields[0]]
congestion1 = int(fields[1].split(":")[1])
congestion2 = int(fields[2].split(":")[1])
congestion3 = int(fields[3].split(":")[1])
congestion4 = int(fields[4].split(":")[1])
dt = fields[5].split("\r")[0].split(" ")
day = day_in_year(dt[0])
timeslot = get_timeslot(dt[1])
key = district + ":" + str(day) + ":" + timeslot
dic[key] = (congestion1, congestion2, congestion3, congestion4)
f.close()
return dic
def process_weather(wdir):
"""
{ key = day:timeslot data = (int weather, int(temperature), int(pollution}
"""
print "processing weather"
dic = {}
weather_files = os.listdir(wdir)
for file in weather_files:
f = open(wdir + file, "r")
for line in f:
fields = line.split("\t")
date, time = fields[0].split(" ")
day = day_in_year(date)
dow = day_of_week(date)
timeslot = get_timeslot(time)
weather = int(fields[1])
temp = round(float(fields[2]))
pollution = fields[3].split("\n")
pollution = round(float(pollution[0]))
# create key (day:timeslot)
key = str(day) + ":" + timeslot
dic[key] = (weather, temp, pollution)
f.close()
return dic
def get_poi(file, dist_dict):
# create poi dict consisting of number of destinations by
# classification per district key will be district:class
f = open(file, "r")
di = {}
for line in f:
fields = line.split("\t")
dist = dist_dict[fields[0]]
for i in range(len(fields)-1):
if i != 0:
poi, cnt = fields[i].split(":")
key = dist + ":" + poi
di[key] = int(cnt)
return di
def get_districts(file):
# create district dictionary based on provided file in cluster_map
f_dist = open(file, "r")
dist_dict = {}
for line in f_dist:
fields = line.split("\t")
dist_dict[fields[0]] = fields[1][0]
f_dist.close()
return dist_dict
def get_timeslot(time):
# convert time in one of 144 10-minute daily intervals
# time is in format ('HH:MM:SS')
t = time.split(":")
minutes = int(t[0]) * 60 + int(t[1])
return str(minutes / 10 + 1)
def day_in_year(date):
#convert date into day in the year
# ie 2016-01-03, return 3, third day in year
x = date.split("-")
yy = int(x[0])
mm = int(x[1])
dd = int(x[2])
return datetime.datetime(yy,mm,dd).toordinal() - datetime.datetime(yy,01,01).toordinal()
def day_of_week(date):
# return day of week (0=Monday to 6=Sunday)
x = date.split("-")
return datetime.datetime(int(x[0]), int(x[1]), int(x[2])).weekday()
if __name__ == '__main__':
preprocess1()