-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
858 lines (693 loc) · 46.8 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
\documentclass[twoside, a4paper]{article}
\usepackage[inner=2cm, outer=2cm, top=2cm, bottom=2cm, includeheadfoot]{geometry}
\raggedbottom
% \raggedleft
% \raggedright
\usepackage[most]{tcolorbox}
% \usepackage{amsmath}
\usepackage{amssymb}
\usepackage{shortcut}
\usepackage{graphicx}
\usepackage{tabularx}
\usepackage{hyperref}
\renewcommand{\familydefault}{\sfdefault }
\title{ Njang/jàng Xayma}
\author{SARR Georges Mbissane}
\date{Ci wéeru ñaari junni ak ñaar fukk ak ñaar (2022)}
\begin{document}
\maketitle
Téeré ak video yi top la sukëndiku ngir bind téeré xayma bi:
\begin{itemize}
\item \href{https://www.youtube.com/@ecolesausenegal/search?query=cours%20mathematiques%20wolof}{Youtube: Ecoles au Senegal, Cours - Mathématiques - Wolof *}
\item \href{https://fr.glosbe.com/}{Baatukaay ci biir internet}
\item \href{https://ia801303.us.archive.org/29/items/dictionnairesfra00holy/dictionnairesfra00holy.pdf}{Dictionnaire Wolof-Français, Français-Wolof} (baatukay bu magét la nak)
\item Téeré xayma wu David Delaunay CPGE Dupuy Delome
\end{itemize}
% Ay baat you am solo:
% \begin{itemize}
% \item jéemantu: exercice ?
% \item njumté: erreur
% \item lim: compter/nombre
% \item mandargal: représenter ? -> royukaay ? (exemple) 30 moy mandargal fanweer
% \item nguir leeraal: pour expliquer
% \item saam: ensemble ?
% \item këraleg: tableau ?
% \item tontu: réponse
% \item nafar: souvenir ? en lien avec nafa -> Bourse, Poche, Porte-feuille (objet qui permet de garder un autre objet)
% \item tegtal ? : indication ?
% \item nataal: image
% \item njem: entreprise dans le sens d'entreprendre ?
% \item jumtukaay: outil
% \item xaymakaay/jumtukaay xayma: calculatrice
% \item cax: devinette/problème ? exemple: (caxu Xayma) problème en mathématiques
% \item ac/toxal: retenue (dans les opérations arithmétiques)
% \item tomb: point
% \item ëmbef: élément ?
% \item mboolo: group
% \item $a$ ñu toftal ci $b$: on met $b$ après $a$ ?
% \end{itemize}
\section{Ëmb}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Nañu wowee ëmb, beep saamu cër\footnote{élément} yu ñuy wowee ëmbeef. Amal been ëmb $E$, da ñuy né $x$ ëmbeefu $E$ la, ta ñu ko bindé $x\in E$\footnote{Mën na ñu ko liré "$x$ mu ngi ci biir $E$"}, bu féké ni $x$ ci biir $E$ la nek/la bok.
\end{tcolorbox}
\begin{itemize}
\item $\N, \Z, \Q, \R$ ay ëmb la ñu.
\item $\{a, b, c, d, ... z\}$ moy ëmb bu am ab ëmbeef $a$, $b$, $c$, ..., ba $z$
\item $\emptyset$ moy mbindu ëmb bu amul tus, manam ëmb bu amul been ëmbeef.
\item $\{a, b\} = \{b, a\}$
\end{itemize}
\begin{figure}[ht]
\centering
\includegraphics[scale = 0.5]{image/embeefu_emb.png}
% \caption{}
\label{fig:embeefu_emb}
\end{figure}
\subsection{Wàllu ëmb}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal ëmb $E$ ak ëmb $F$, $E$ mu ngi ci biir $F$ bu féké ni rek\footnote{si et seulement si = bu féké ni rek ?} ëmbeef $x$ yëp yu nek ci $E$ ñu ngi ci biir $F$. Da ñuy wax itam $E$ wàllu $F$ la, di ko bindé $E \subset F$.
\end{tcolorbox}
Nañu mandargal wàllu ëmb:
\begin{itemize}
\item Amal ëmb $E=\{1,2,3\}$, $F=\{1,2,3,4,5,6\}$ ak $G = \{1,2,4,5,6\}$, kon $E \subset F$, wayé $E$ nekkoul wàllu $G$, ñu koy bindé $E\not\subset G$, ndaxté $3$ mu ngi ci biir $E$, wanté $3$ nekkul ci biir $G$.
\end{itemize}
\begin{figure}[ht]
\centering
\includegraphics[scale = 0.5]{image/wallu_emb.png}
% \caption{}
\label{fig:wallu_emb}
\end{figure}
\subsection{Ëmbu ay wàllu been ëmb}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal been ëmb $E$, ëmbu wàllu $E$ yi, mo di saamu wàllu $E$ yëp, ñu di ko bindé $\mathcal{W}(E)$.
\end{tcolorbox}
Nañu mandargal ëmbu ay wàllu been ëmb:
\begin{itemize}
\item Amal ëmb $E=\{a,b,c\}$, $\mathcal{W}(E) = \big\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\big\}$
\end{itemize}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=yellow!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
\begin{itemize}
\item Amal been ëmb $E$: $E\subset E$\footnote{ñu di ko bindé itam $E \in\mathcal{W}(E)$}, manaam $E$ wàllu $E$ la
\item Ëmbeefu $\mathcal{W}(E)$ ay ëmb la ñu.
\end{itemize}
\end{tcolorbox}
\subsection{Sëfu Xayma ci ëmb yi}
\subsubsection{Selebe(yoon) ay ëmb (intersection d'ensembles)}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal ëmb $E$ ak ëmb $F$, saamu ëmbeef $x$ yëp yu bok ci $E$ té bok itam ci $F$, ñu di ko bindé $E \cap F$ la ñuy wowee selebe wu $E$ ak $F$
\end{tcolorbox}
Nañu mandaargal\footnote{Exemple ?} selebe ay ëmb.
\begin{itemize}
\item Amal ñaari ëmb $E = \{1,2,3\}$ ak $F=\{4,5\}$, $E \cap F = \emptyset$ (manaam $E$ ak $F$ bokku ñu been ëmbeef.)
\item Amal $E = \emptyset = F$, $E \cap F = \emptyset$
\item Amal $E = \emptyset$, $F = \{0,1\}$, $E \cap F = \emptyset$
\end{itemize}
\subsubsection{Lëkkalé/Mboole ay ëmb (union d'ensembles)}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal ëmb $E$ ak ëmb $F$, saamu ëmbeef $x$ yëp yu bok ci $E$ wala bok ci $F$, ñu di ko bindé $E \cup F$ la ñuy wowee mboolo $E$ ak $F$.
\end{tcolorbox}
Nañu mandaargal mbollo ëmb:
\begin{itemize}
\item Amal ñaari ëmb $E = \{1,2,3,4,5\}$ ak $F=\{4,5,6,7,8,9\}$, $E \cup F =\{1,2,3,4,5,6,7,8,9,10\}$
\item Amal $E = \emptyset = F$, $E \cup F = \emptyset$
\item Amal $E = \emptyset$, $F = \{0,1\}$, $E \cup F = \{0,1\}$
\end{itemize}
\begin{figure}[ht]
\centering
\includegraphics[scale = 0.5]{image/mbollo_selebe_emb.png}
% \caption{}
\label{fig:mbollo_selebe_emb}
\end{figure}
\subsubsection{Full carteseng ay ëmb}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal ñaari ëmb $E$ ak $F$, fullu $E$ ak $F$, ñu koy bindé $E \times F$, mo di beep tank-tank\footnote{couple} $(x,y)$ bu deme ni\footnote{tel que} $x \in E$ ak $y\in F$
\end{tcolorbox}
\begin{itemize}
\item Amal $E=\{1,2,3\}$ ak $F = \{4,5\}$, kon $E\times F =\big\{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\big\}$
\end{itemize}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal been limukaay $n \in \N$ bu eup $2$\footnote{$n\geq 2$}. Amal itam $n$ ëmb $E_1, E_2, ..., E_n$, fullu $E_1, E_2, ..., E_n$, ñu koy bindé $E_1 \times ... \times E_n$, mo di beep ëmbeef $x = (x_1,..,x_n)$ bu deme ni\footnote{tel que} $x_1 \in E_1$, $x_2 \in E_2$, ..., $x_n \in E_n$
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=yellow!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal ëmb $E$ ak ëmb $F$;
\begin{itemize}
\item Bu féké $E$ ak $F$ ay ëmb yu wuté la ñu, ñuy binde $E\neq F$, té itam $E\neq \emptyset$ ak $F\neq \emptyset$, kon fullu $E$ ak $F$ wuté na ak fullu $F$ ak $E$, ñuy bind $E\times F \neq F \times E$
\item Bu féké $E = F$, manaam $E$ ak $F$ been la ñu, mën na ñu binde $E\times F = E \times E = E^2$
\item Amal ñaari tank-tank $(u, v)$ ak $(x, y)$ ci biir $E\times F$, da ñuy né $(u, v) = (x, y)$ bu féké rek $u = x$ ak $v = y$. Ngir leeral, $(1,2) \in \N^2$ ak $(1,3)\in \N^2$ wuté na ñu, ndaxté $2$ wuté na ak $3$.
\item Bu féké ni limu ëmbeefu $E$ ak limu ëmbeefu $F$ da ñuy jex\footnote{$E$ et $F$ sont des ensembles finis.}, kon ëmbeefu $E\times F$ maat nañu lu tolu ci limu ëmbeefu $E$ nga ful ko ak limu ëmbeefu $F$. Ngir leeral wax ji, amal $E=\{1,2,3\}$ ak $F = \{4,5\}$, kon $E$ amna ñaat ëmbeef (kon limu ëmbeefu $E$, manam ñaat, day jex), $F$ amna ñaari ëmbeef (kon limu ëmbeefu $F$, manam ñaar, day jex), limu ëmbeefu $E\times F$ mo di ñaat nga full ko ak ñaar, manaan $3\times 2=6$. Leneen lu koy woné mo di: $E\times F =\big\{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\big\}$ amna bu bax juròom-been (6) ëmbeef.
\end{itemize}
\begin{itemize}
\item Amal $n$ ëmb $E_1, E_2, ..., E_n$, bu féké ni $E=E_1=E_2=...=E_n$, mên na ñu binde, $E_1 \times ... \times E_n = E^n$
\end{itemize}
\end{tcolorbox}
\begin{figure}[ht]
\centering
\includegraphics[scale = 0.5]{image/full_carteseng.png}
% \caption{}
\label{fig:full_carteseng}
\end{figure}
\section{Doxalin}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Been \footnote{Fonction ou application}doxalin $f$ mo di beep ñaati ëmb $E$, $F$ ak $\mathcal{G}$. $E$ moy ëmbef bu doxalin $f$ di tambali, $F$ moy ëmbef bu muy agsi.
Da ñuy bindë $\mathcal{G} = \big\{ (x,y) \in E\times F, y = f(x)\big\}$.
Ëmb $\mathcal{G}$, ñu di ko wowé graaf, moy lëkkalé beep ëmbeef $x\in E$ ak been ëmbeef $y\in F$ rek. Doxalin $f$ ñio ngi koy bindé: $$f: \left\{
\begin{array}{ll}
E \rightarrow{} F \\
x \mapsto f(x)
\end{array}
\right.$$
wala ñuy binde $$f: E \rightarrow F, \hspace{0.2cm}\text{ak } f(x) = ...$$
wala itam $$f: x\mapsto ... \hspace{0.2cm} \hspace{0.2cm} \text{ak } f: E \rightarrow F$$\\
Beep ëmbeef $x\in E$ warna am been natal\footnote{Image par une fonction} rek ci $f$, nataal gogu ñu di ko bindé $f(x)$
\end{tcolorbox}
Nañu binde $\R_{+} = \{x \in \R, x \geq 0 \}$ manaam ëmbeefu limu $\R$ yu "positif" yi walla tolo ak tus, ak $\R_{+}^{*} = \{x \in \R, x > 0 \}$, manaam ëmbeefu limu $\R$ yu "positif" yi té weesu/ëp tus.
\begin{itemize}
\item Doxalin $f: \left\{
\begin{array}{ll}
\R \rightarrow{} \R \\
x \mapsto x^2+1
\end{array}
\right.$ ak doxalin $g: \left\{
\begin{array}{ll}
\R \rightarrow{} \R_{+} \\
x \mapsto x^2+1
\end{array}
\right.$ wuté nañu, ndaxté ëmbeef yu ñuy agsi wuté nañu: $\R \neq \R_{+}$
\item $f: \left\{
\begin{array}{ll}
\R \rightarrow{} \R_{+}^{*} \\
x \mapsto x^2
\end{array}
\right.$ nekkul doxalin, ndaxté $0^2=0\not\in \R_{+}^{*}$
\end{itemize}
\section{Xalaat ci Xayma}
\subsection{Baat}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Been \textbf{baat}\footnote{assertion, prédicat} ci Xayma mo di beep kaadu gi mëna nekka dëgg\footnote{vrai}, walla nekka lu dul dëgg\footnote{faux}.\\
Dëgg (D), ak lu dëggul (L) la ñuy wowee xayma dëgg\footnote{valeur de vérité}. Bu féké ñaari baat $\mathcal{B}$ ak $\mathcal{C}$ ño bok xayma dëgg, kon da ñuy né ño niro, di ko bindé: $\mathcal{B}\sim \mathcal{C}$, seeni xayma dëg bu ñu wuté wé, da ñuy bindë $\mathcal{B}\not\sim \mathcal{C}$
\end{tcolorbox}
Amal $(0,1,2)\in \N^3$, kon baat $\mathcal{B} = "1 \geq 0"$ dëgg la, wanté, baat $\mathcal{C} = "2 + 1 \leq 2"$ du dëgg, kon bok $\mathcal{B}\not\sim \mathcal{C}$.\\
Baat $\mathcal{B}="2=0"$ ak baat $\mathcal{C}="1>2"$ dëgguñu, kon $\mathcal{B}\sim \mathcal{C}$.
\subsection{Muk/Deet}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
\textbf{Muk been baat}\footnote{La négation d'une assertion}$\mathcal{B}$, ñu di ko bindé $\textit{muk } \mathcal{B}$ (wala $\neg \mathcal{B}$) baatu dëgg la, bu féké ni $\mathcal{B}$ du dëgg. Té itam, baat bu dëggul la, bu féké ni $\mathcal{B}$ dëgg la.
\end{tcolorbox}
Amal $x \in \R$, $\mathcal{B}(x) = " x \leq 0"$, kon $\neg \mathcal{B}(x) \sim "x > 0"$.
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal been baat $\mathcal{B}$, boba/kon $\neg (\neg \mathcal{B}) \sim \mathcal{B}$, manaam muk (muk $\mathcal{B}$) ak $\mathcal{B}$ ño book xayma dëgg.
\end{tcolorbox}
\textbf{Woné:}
\vspace{0.3cm}
Amal been baat $\mathcal{B}$ \newline
\vspace{0.3cm}
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\neg\mathcal{B}$ & $\neg(\neg\mathcal{B})$ \\
\hline
D & L & D \\
L & D & L \\
\hline
\end{tabularx}
\subsection{Takhalé ak tékhalé ay baat}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki\footnote{Définition},
watermark color=white]
Takhalo\footnote{Conjonction} ñaari baat $\mathcal{B}$ ak $\mathcal{C}$, ñu di ko bindé $\mathcal{B}\hspace{0.1cm}\land\hspace{0.1cm}\mathcal{C}$, wala $\mathcal{B} \textit{ ak } \mathcal{C}$, baatu dëgg la bu féké ni rek $\mathcal{B}$ dëgg la, té $\mathcal{C}$ dëgg la itam.\\
Tékhalo\footnote{Disjonction} ñaari baat $\mathcal{B}$ ak $\mathcal{C}$, ñu di ko bindé $\mathcal{B}\hspace{0.1cm}\lor\hspace{0.1cm}\mathcal{C}$, wala $\mathcal{B} \textit{ wala } \mathcal{C}$, dëgg la bu féké ni rek $\mathcal{B}$ dëgg la, wala $\mathcal{C}$ dëgg la.\\
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\mathcal{C}$ & $\mathcal{B}\hspace{0.1cm}\land\hspace{0.1cm}\mathcal{C}$ & $\mathcal{B}\hspace{0.1cm}\lor\hspace{0.1cm}\mathcal{C}$ \\
\hline
D & D & D & D \\
D & L & L & D \\
L & D & L & D \\
L & L & L & L \\
\hline
\end{tabularx}
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal baat $\mathcal{B}$ ak baat $\mathcal{C}$, boba/kon:
$$\neg(\mathcal{B} \land \mathcal{C}) \sim (\neg\mathcal{B}) \lor (\neg \mathcal{C})$$
$$\neg(\mathcal{B} \lor \mathcal{C})\sim (\neg\mathcal{B}) \land (\neg \mathcal{C})$$
\end{tcolorbox}
\textbf{Woné:}
Amal baat $\mathcal{B}$ ak baat $\mathcal{C}$, nañu bindë këralegu/natalu\footnote{tableau ?} xayma dëgg baat yi.\\
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\mathcal{C}$ & $\neg\mathcal{B}\hspace{0.1cm}\lor\hspace{0.1cm}\neg\mathcal{C}$ & $\neg(\mathcal{B}\hspace{0.1cm}\land\hspace{0.1cm}\mathcal{C})$ & $\neg(\mathcal{B}\hspace{0.1cm}\lor\hspace{0.1cm}\mathcal{C})$ & $(\neg\mathcal{B})\hspace{0.05cm}\land\hspace{0.05cm}(\neg\mathcal{C})$ \\
\hline
D & D & L & L & L & L \\
D & L & D & D & L & L \\
L & D & D & D & L & L \\
L & L & D & D & D & D \\
\hline
\end{tabularx}
Mën nañu gis ci ñaatel jeñ\footnote{Colonne = jiñ = jeñ ?} gi ak ñeentel gi, né $\neg(\mathcal{B} \land \mathcal{C}) \sim (\neg\mathcal{B}) \lor (\neg \mathcal{C})$. Juròomeel jeñ gi ak juròomeel-beeneel gi, woné nañu né $\neg(\mathcal{B} \lor \mathcal{C})\sim (\neg\mathcal{B}) \land (\neg \mathcal{C})$.
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=green!5!white,colframe=white!75!black,title= Tègtal\footnote{Indication ?},
watermark color=white]
Ngir woné né ñaari baat ño bok xayma dëgg, mën naño jëfandikoo këralegu xayma dëgg yi.
\end{tcolorbox}
\textbf{Jéemantu}\\
Amal ñaat baat $\mathcal{A}, \mathcal{B}, \mathcal{C}$, wonéel ni:
\begin{align*}
\mathcal{B} \land \mathcal{B} & \sim \mathcal{B} \\
\mathcal{B} \lor \mathcal{B} & \sim \mathcal{B} \\
(\mathcal{B} \land \mathcal{C}) \land \mathcal{A} & \sim \mathcal{B} \land (\mathcal{C} \land \mathcal{A}) \\
(\mathcal{B} \lor \mathcal{C}) \lor \mathcal{A} & \sim \mathcal{B} \lor (\mathcal{C} \lor \mathcal{A}) \\
(\mathcal{B} \land \mathcal{C}) \lor \mathcal{A} & \sim (\mathcal{B} \lor \mathcal{A}) \land (\mathcal{C} \lor \mathcal{A}) \\
(\mathcal{B} \lor \mathcal{C}) \land \mathcal{A} & \sim (\mathcal{B} \land \mathcal{A}) \lor (\mathcal{C} \land \mathcal{A})
\end{align*}
\subsection{Baat bi yobualé/andi been baat}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal baat $\mathcal{B}$ ak baat $\mathcal{C}$. Da ñuy né $\mathcal{B}$ \textit{da yobualé }$\mathcal{C}$\footnote{$\mathcal{B}$ implique $\mathcal{C}$} dëgg la, bu féké ni rek $\mathcal{C}$ mënul bagna nek dëgg bu $\mathcal{B}$ néké dëgg.\\
$\mathcal{B}$ \textit{da yobualé }$\mathcal{C}$ ñu di ko bindé $\mathcal{B} \implies \mathcal{C}$.\\
Xayma dëgg $\mathcal{B} \implies \mathcal{C}$ mu ngi ni:\\
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\mathcal{C}$ & $\mathcal{B}\implies\mathcal{C}$ \\
\hline
D & D & D \\
D & L & L \\
L & D & D \\
L & L & D \\
\hline
\end{tabularx}
\end{tcolorbox}
Ak beep $x\in\R$, bo bindé $\mathcal{B}(x) = "x >= 2"$, $\mathcal{C}(x) = "x^2 >= 4"$, kon $\mathcal{B}(x) \implies \mathcal{C}(x)$ dëgg la.
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Bu $\mathcal{B} \implies \mathcal{C}$ néké dëgg, kon da ñuy né
\begin{itemize}
\item $\mathcal{B}$ \textit{baat bu doy} $\mathcal{C}$ la, wala $\mathcal{B}$ \textit{doy na} $\mathcal{C}$.\footnote{$\mathcal{B}$ est une condition suffisante pour $\mathcal{C}$}
\item $\mathcal{B}$ \textit{da soxla} $\mathcal{C}$.\footnote{$\mathcal{C}$ est une condition nécessaire pour $\mathcal{B}$}
\end{itemize}
$\mathcal{C} \implies \mathcal{B}$ mo di \textit{wëlbati wu} \footnote{implication réciproque} baat $\mathcal{B} \implies \mathcal{C}$.
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal baat $\mathcal{B}$ ak baat $\mathcal{C}$, boba:
\begin{align*}
(\mathcal{B} \implies \mathcal{C}) & \sim (\neg\mathcal{B}) \lor \mathcal{C} \\
(\mathcal{B} \implies \mathcal{C}) & \sim \big( (\neg\mathcal{C}) \implies (\neg \mathcal{B}) \big)
\end{align*}
$(\neg\mathcal{C}) \implies (\neg \mathcal{B})$ la ñuy wowee \textit{contaraposee}\footnote{Contraposée} wu $\mathcal{B} \implies \mathcal{C}$
\end{tcolorbox}
\textbf{Woné:}
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\mathcal{C}$ & $\mathcal{B}\implies\mathcal{C}$ & $(\neg\mathcal{B}) \lor \mathcal{C}$ \\
\hline
D & D & D & D \\
D & L & L & L \\
L & D & D & D \\
L & L & D & D \\
\hline
\end{tabularx}
\vskip 0.5cm
Mën na ñu gis né $(\mathcal{B} \implies \mathcal{C}) \sim (\neg\mathcal{B}) \lor \mathcal{C}$ ci ñaateel jeñ ak ñeenteel gi, kon bok bu ñu wécanté $\mathcal{B}$ ak $\neg \mathcal{C}$, té wécanté itam $\mathcal{C}$ ak $\neg\mathcal{B}$, ñu am $\big( (\neg\mathcal{C}) \implies (\neg \mathcal{B}) \big) \sim \big( (\neg(\neg\mathcal{C})) \lor (\neg\mathcal{B})\big) \sim \big(\mathcal{C} \lor (\neg\mathcal{B}) \big)\sim (\neg\mathcal{B}) \lor \mathcal{C} \sim (\mathcal{B} \implies \mathcal{C})$, fi la ñuy jexalé woné gi.\\
Mënon nañu woné itam
$(\mathcal{B} \implies \mathcal{C}) \sim \big( (\neg\mathcal{C}) \implies (\neg \mathcal{B}) \big)$ ak natal xayma dëgg yi.
\subsection{Baat yu yèm}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal ñaari baat $\mathcal{B}$, $\mathcal{C}$.
$\mathcal{B}$ \textit{mo yèm ak} $\mathcal{C}$\footnote{L'équivalence de deux assertions}, ñuy bindë $\mathcal{B}\iff \mathcal{C} $, mo di baat $(\mathcal{B}\implies \mathcal{C}) \land (\mathcal{C}\implies \mathcal{B})$, manaam $$\mathcal{B}\iff \mathcal{C} \sim \big( (\mathcal{B}\implies \mathcal{C}) \land (\mathcal{C}\implies \mathcal{B})\big) $$
Natal xayma dëgg bu yèmalé ñaari baat mo ngi ni:\\\\
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\mathcal{C}$ & $\mathcal{B}\implies\mathcal{C}$ & $\mathcal{C}\implies\mathcal{B}$ & $\mathcal{B}\iff\mathcal{C}$ \\
\hline
D & D & D & D & D \\
D & L & L & D & L \\
L & D & D & L & L \\
L & L & D & D & D \\
\hline
\end{tabularx}\\\\
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm,
colback=yellow!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal ñaari baat $\mathcal{B}$, $\mathcal{C}$.
\begin{itemize}
\item Bu $\mathcal{B}\iff\mathcal{C}$ néké dëgg, kon $\mathcal{B}\sim \mathcal{C}$.
\item Bu féké $\mathcal{B}\iff\mathcal{C}$ dëggul, kon $\mathcal{B}\not\sim\mathcal{C}$
\end{itemize}
Seetlu yi muj, woné nañu né \textbf{yémalé ay baat ak nirolé lèn been lañu}. Manam wax $\mathcal{B}\iff\mathcal{C}$ been la ak wax $\mathcal{B}\sim \mathcal{C}$, manaam:
\begin{align*}
(\mathcal{B} \iff \mathcal{C}) & \sim \big( \mathcal{B} \sim \mathcal{C}\big) \\
(\mathcal{B} \iff \mathcal{C}) & \iff \big( \mathcal{B} \sim \mathcal{C}\big)
\end{align*}
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal baat $\mathcal{B}$ ak baat $\mathcal{C}$, boba:
\begin{align*}
(\mathcal{B} \iff \mathcal{C}) & \sim \big( (\neg\mathcal{C}) \iff (\neg \mathcal{B}) \big)
\end{align*}
\end{tcolorbox}
\textbf{Jéemantu:} Woneel tèg bi muj
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Bu $\mathcal{B} \iff \mathcal{C}$ néké dëgg, kon da ñuy né\\
\begin{itemize}
\item $\mathcal{B}$ \textit{baat bu soxla té doy} $\mathcal{C}$ la, \footnote{$\mathcal{B}$ est une condition nécessaire et suffisante pour $\mathcal{C}$}
\end{itemize}
\end{tcolorbox}
\subsection{Natakat baat}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Amal been ëmb $E$. Ak beep $x\in E$, amal been baat $\mathcal{B}(x)$ bu nék surgau $x$\footnote{Une assertion qui dépend de $x$}.
Da ñuy wax \textit{ak beep $x\in E$, $\mathcal{B}(x)$ dëgg la}, té di bindë $$\forall x\in E, \mathcal{B}(x)$$ bu féké ni rek $\mathcal{B}(x)$ dëgg la ak beep ëmbeef $x$ bu nék ci biir $E$.\\
Da ñuy wax \textit{ak been $x\in E$, $\mathcal{B}(x)$ dëgg la}, té di bindë $$\exists x\in E, \mathcal{B}(x)$$ bu féké ni rek $\mathcal{B}(x)$ dëgg la ak lu mu tuti tuti been ëmbeef $x$ bu nék ci biir $E$.\\
Da ñuy wax \textit{ak been $x\in E$ rek, $\mathcal{B}(x)$ dëgg la}, té di bindë $$\exists! x\in E, \mathcal{B}(x)$$ bu féké ni rek $\mathcal{B}(x)$ dëgg la ak been ëmbeef $x$ dong bu nék ci biir $E$.
\end{tcolorbox}
Mën nañu né $\forall x \in \R, \exp(x) > 0$, ak $\forall x \in \R, \exists ! n \in \Z, n\leq x < n+1$\\
Amal been doxalin $f$ bi jogé ci $\R$ té agsi ci $\R$, kon bok:
Da ñuy wax $f$ moy doxalinu dara/tus \footnote{La fonction $f$ est la fonction nulle.} bu féké ni rek $$\forall x \in \R, f(x) = 0$$
Da ñuy wax $f$ di na agsi ci tus\footnote{La fonction $f$ s'annule} bu féké ni rek $$\exists x \in \R, f(x) = 0$$
Da ñuy wax $f$ di na agsi been yoon ci tus bu féké ni rek \footnote{La fonction $f$ s'annule une seule fois} $$\exists! x \in \R, f(x) = 0$$
Da ñuy wax $f$ ci $\R_{+}$ rek la mëna tolo ak tus\footnote{La fonction $f$ ne s'annule que sur $\R_{+}$} bu féké ni rek $$\forall x \in \R, f(x) = 0 \implies x \in \R_{+}$$
wala itam $$\forall x \in \R, x \not\in \R_{+} \implies f(x) \neq 0$$
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
\begin{align*}
\neg(\forall x\in E, \mathcal{B}(x)) & \sim \exists x\in E, \neg \big(\mathcal{B}(x)\big) \\
\neg(\exists x\in E, \mathcal{B}(x)) & \sim \forall x\in E, \neg \big(\mathcal{B}(x)\big)
\end{align*}
\end{tcolorbox}
\textbf{Jéemantu:} Woneel tèg yi muj
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Waxanté\footnote{Convention},
watermark color=white]
Beep baat buy tambalé ak $\exists x \in \emptyset$ dëggul, kon beep baat buy tambalé ak $\forall x \in \emptyset$ dëgg la.
\end{tcolorbox}
\textbf{Jéemantu bu am solo ci xam-xam ci koompuutar}\footnote{Exercice important en informatique}
Amal been doxalin $f$ bi jogé ci been full carteseng ëmb xayma dëgg yi $\{0,1\}^n$, té di agsi ci ëmbu xayma dëgg yi, $0$ di téeki lu dëggul $(L)$, $1$ di téeki dëgg $(D)$, ñuy bindë
$$f: \{0,1\}^n \rightarrow \{0,1\}$$
mën nañu woné né $f$ mën nañu ko bindé ak sëfu xayma dëgg \textit{takhalo} (manaam $\land$) ak sëfu xayma dëgg \textit{deet} (manaam $\neg$). Manam bo jëlé $b = (b_1,b_2,...b_n) \in \{0,1\}^n$, kon $f(b)$ mën nañu kon bindé ak $b_1,b_2,...b_n$ ak $\land$ ak $\neg$ dong.\\
\textit{Tégtal: ngir woné tèg bi muj}
\begin{itemize}
\item[$\bullet$] Mën nañ woné ni amna been $0\leq k \leq 2^n$ ak $f_1$, ..., $f_k$ ay doxalin yuy jogé ci $\{0,1\}^n$ té agsi ci $\{0,1\}$, yu mel ni $$f(b) = f^{(1)}(b) \lor f^{(2)}(b) \lor ... \lor f^{(k)}(b)$$ té $f^{(l)}(b) = \left\{\begin{array}{ll}
1 \text{ bu féké ni $b=b^{(l)}$} \\
0 \text{ bu féké ni $b\neq b^{(l)}$}
\end{array}\right.$, ak $b^{(l)}$ been néekin $b$ ci këralegu xayma dëggu $f$, té $f(b^{(l)}) = 1$. Ngir léeral, bu féké $b=(1,0,1,0,0,0,1)$ ci liñ $l$ këralegu xayma dëgg doxalin $f$, té $f(b^{(l)}) = 1$, mën nañu bindë $b^{(l)} = (1,0,1,0,0,0,1)$ té bindë $f_l(b) = b_1 \land (\neg b_2) \land b_3 \land (\neg b_4) \land (\neg b_5) \land (\neg b_6) \land b_7 $. Bu féké $f = 0$ (manaam $k=0$), kon mën nañu bindë $f(b)=b_1 \land (\neg b_1)$
\item[$\bullet$] Fatéliku itam né $\lor$ mën nañu ko bindë ak $\land$ ak $\neg$
\end{itemize}
\begin{figure}[ht]
\centering
\includegraphics[scale = 0.5]{image/informatik0.png}
% \caption{}
\label{fig:informatik0}
\end{figure}
\subsection{Kadum sago}
Ngir wax né been baat, baatu dëgg la ci Xayma, war na ñu ko firndeel/woral ak been woné, manaam ci Xayma, woné rek moy dëggal been baat. Baatu dëgg bu nék, \textbf{tèg}\footnote{Proposition} la tud. Ci tèg yi, amna yu ci gëna am solo, ñu len di wowée \textbf{téorèm}\footnote{Théorème}. Wanté amna ay baat yu ñu dul woné té nangu né ay baati dëgg la ñu, ñu léen di wowée \textbf{ñalém}, wala \textbf{baatu dëga yu wor}\footnote{Axiomes}. Baat yoyu lé, mën na ñu lèna jappé ay sart\footnote{Règles} yuy lal xalaat ci Xayma.\\
Nañu lim woné yu ñuy tama jëfandiko ngir woral ay baat.
\subsubsection{Woné ab contaraposee}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Mën na ñu woné been baat $\mathcal{B} \implies \mathcal{C}$ dëgg la, bu ñu woné $(\neg\mathcal{C}) \implies (\neg \mathcal{B})$ dëgg la. Woné gi la ñuy wowée \textbf{woné contaraposee}\footnote{Démonstration par contraposition}
\end{tcolorbox}
\subsubsection{Tofal}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,
watermark color=white]
Mën na ñu woné been baat $\mathcal{C}$ dëgg la, bu ñu tambali wé ci béneen baat $\mathcal{B}$ bu nek dëgg té woné ni $\mathcal{B} \implies \mathcal{C}$ dëgg la. Woné gi la ñuy wowée \textbf{tofal}\footnote{Tirer une conséquence.}.
\end{tcolorbox}
Nañu woné $$ \forall x \in \R, x^2 + 1 > 0$$ ak tofal.
Amal $x\in \R$. Xam na ñu $x^2 \geq 0$ ak $1 > 0$ wanté xamna ñu itam sa su jëlé $a$ ak $b$ ay ëmbeefu $\R$, $$(a \geq 0)\text{ ak }b > 0 \implies a+b >0$$ kon itam $x^2+1>0$ (bu ñu jëlé $a=x^2$ ak $b=1$).
\subsubsection{Tofal ak tékhalé ay baat / ak nékin yëp yu wuté}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Mën nañu woné $\mathcal{C}$ dëgg la, bu ñu tambali wé ak béneen baat $\mathcal{B}$, té woné $\mathcal{B} \implies \mathcal{C}$ ak $(\neg\mathcal{B})\implies \mathcal{C}$ dëgg la. Woné gi mo tud \textbf{tofal ak tékhalé ay baat}\footnote{Disjonction des cas}
\end{tcolorbox}
Nañu woné $$ \forall n \in \N, \frac{n(n + 1)}{2} \in \N$$
di jëfandiko tofal ak tékhalé ay baat.
Amal $n \in \N$, xam na ñu amna been $k \in \N$ bu mel ni $n = 2 k$, wala $n = 2k+1$.
Bu féké $n = 2 k$, kon $$\frac{n(n + 1)}{2} = \frac{2k(2k+1)}{2} = k(2k+1) \in \N$$
Bu féké itam $n = 2k+1$, kon $$\frac{n(n + 1)}{2} = \frac{(2k+1)(2k+2)}{2} = (2k+1)(k+1) \in \N$$
fi la woné gi jexé.
\subsubsection{Wédi}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Mën nañu woné $\mathcal{B}$ dëgg la, bu ñu woné ni amna béneen baat $\mathcal{C}$ bu dëggul, té woné itam $(\neg \mathcal{B}) \implies \mathcal{C}$ dëgg la.
\end{tcolorbox}
Nañu woné ni amul been $N \in \N$, bu gën ëp\footnote{Strictement supérieur} beep $n \in \N$ di ko bindé itam $$\exists N \in \N, \forall n \in \N, N > n$$
dëggul. Nañu ko wédi, manaan né amna been $N \in \N$, bu gën ëp beep $n \in \N$, kon $N$ gogu mo gën ëp $N+1$, ndaxté $N+1 \in \N$, kon dé $$1 = (N+1) - N < 0$$
Li mënul nék, ndaxté xam nañu $1 > 0$ ci biir $\N$
\subsubsection{Topalanté ay baat}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal $n_0 \in \N$ ak ay baat $\mathcal{B}(n)$, $n \in \N, n \geq n_0$.\\
Bu féké $\mathcal{B}(n_0)$ dëgg la, té itam
$$\forall n\geq n_0, \hspace{0.1cm}\mathcal{B}(n) \implies \mathcal{B}(n+1)$$
kon
$$\forall n \geq n_0, \hspace{0.1cm} \mathcal{B}(n)$$
\end{tcolorbox}
Nañu woné $$\forall n \in \N^{*}, 1+2+3+...+n=\frac{n(n+1)}{2}$$
ak topalanté ay baat.\\
Amal $n=1$, kon $1+2+3+..+n=1$, té itam $\frac{n(n+1)}{2} = 1$, kon dëgg la ak $n=1$.\\
Amal been $n \in \N^{*}$. Bu féké ni $1+2+3+...+n=\frac{n(n+1)}{2}$, kon
$$1+2+3+...+(n+1) = (1+2+3+...+n)+(n+1) = \frac{n(n+1)}{2} + n+1 = \frac{(n+1)\big((n+1)+1\big)}{2}$$
fi la woné gi jexé.
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal $\mathcal{B}$ ak $\mathcal{C}$, natal xayma dëgg yi ñoy dëggal woné yi jal.\\
natal gi njëk:\\
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\mathcal{C}$ & $\mathcal{B}\implies\mathcal{C}$ \\
\hline
D & D & D \\
D & L & L \\
L & D & D \\
L & L & D \\
\hline
\end{tabularx}
\vspace{0.3cm}
ñaareel natal gi:
\vspace{0.3cm}
\begin{tabularx}{0.8\textwidth} {
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X
| >{\centering\arraybackslash}X |}
\hline
$\mathcal{B}$ & $\mathcal{C}$ & $\neg\mathcal{B}\implies\mathcal{C}$ \\
\hline
D & D & D \\
D & L & D \\
L & D & D \\
L & L & L \\
\hline
\end{tabularx}
\begin{itemize}
\item \textbf{Tofal}: liñ\footnote{Ligne} bu njëk ci natal bu njëk bi moy woral woné ak \textit{tofal}.
\item \textbf{Tofal ak tékhalé ay baat}: liñ bu njëk ak ñaateel liñu ñaari natal yi, ñoy woral woné ak \textit{tofal ak tékhalé ay baat}.
\item \textbf{Wédi}: ñaareel liñ ñu ñaareel lu natal gi moy woral woné ak \textit{wédi}
\item \textbf{Topalanté ay baat}: amal $n_0 \in \N$ ak ay baat $\mathcal{B}(n)$, $n \in \N, n \geq n_0$.\\
Bu féké $\mathcal{B}(n_0)$ dëgg la, té itam
$$\forall n\geq n_0, \hspace{0.1cm}\mathcal{B}(n) \implies \mathcal{B}(n+1)$$
kon, ndaxté $\mathcal{B}(n_0)$ dëgg la, té $\mathcal{B}(n_0) \implies \mathcal{B}(n_0+1)$ dëgg la, woné ak \textit{tofal} dëggal na $\mathcal{B}(n_0+1)$, \textit{tofal} moy woral woné ak \textit{topalanté ay baat}
\end{itemize}
\end{tcolorbox}
\section{Xayma ci ëmb yi}
% \subsection{Diganté ay ëmb (relation entre des ensembles)}
\subsection{Wàllu}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal ëmb $E$ ak $F$, \textbf{$E$ wàllu $F$ la}, ñuy bindë $E\subset F$ bu féké ni, ak beep $x\in E$, $x\in F$ itam:
$$E \subset F \iff \forall x \in E, x \in F$$
kon \textbf{$E$ nekul wàllu $F$}, ñuy bindë $E \not \subset F$ bu féké ni amna been $x \in E$ té $x \not \in F$
$$E \not \subset F \iff \exists x \in E, x \not \in F$$
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal been ëmb $E$ ak $F$, kon
\begin{itemize}
\item[$\bullet$] $\emptyset \subset F$ ndaxté $\forall x \in \emptyset, x\in F$ (ndaxté beep baat bu di tambali ak $\forall x \in \emptyset$ dëgg la)
\item[$\bullet$] $E \subset E$, ndaxté $\forall x \in E, x \in E$ lu leer la
\end{itemize}
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal ëmb $E$ ak $F$, kon
$$E = F \iff (E \subset F \text{ ak } F \subset E) $$
\end{tcolorbox}
Woné:\\
Amal ëmb $E$ ak $F$. Ngir woné $E = F \iff E \subset F \text{ ak } F \subset E $, mën nañu woné \\
$\mathcal{B}$ = "($E = F \implies E \subset F \text{ ak } F \subset E $)" dëgg la, té woné itam $\mathcal{C}$ = "$(E \subset F \text{ ak } F \subset E) \implies E=F $" dëgg la.\\
Nañu woné $\mathcal{B}$. Xam nañu $E\subset E$ (seetlu bi muj mo ko wax). Bu féké $E=F$, kon $E \subset F$ (bu ñu wecé ñaareel $E$ bi ak $F$ ci diganté gi $E\subset E$). Nonu la ñuy woné itam $F\subset E$ bu féké $E=F$, kon $\mathcal{B}$ dëgg la. \\
Nañu woné $\mathcal{C}$ dëgg la ak contaraposee wam manaam $E \neq F \implies \neg (E \subset F \text{ ak } F \subset E)$. Bu féké $E \neq F$ (manaam $E$ wuté na ak $F$, kon $\exists x \in E, x \not\in F$ mba/wala $\exists y \in F, y \not\in E$, manaam \textit{deet}$(\forall x \in E, x \in F \text{ ak } \forall y \in F, x\in E)$, manaam $\neg (E \subset F \text{ ak } F \subset E)$. Fi la woné gi jexé.
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal ëmb $E$, $F$, $G$ kon
$$E \subset F \text{ ak } F \subset G \implies E \subset G$$
\end{tcolorbox}
\textbf{Jéemantu:} Woneel tèg bi muj.
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal ëmb $E$, \textbf{$\mathcal{W}(E)$ mo di mbidu ëmb bi bolé rek wàllu $E$ yëp}, manaam amal been ëmb $A$
$$A\in \mathcal{W}(E) \iff A \subset E$$
\end{tcolorbox}
Amal ëmb $E$, kon $\emptyset \in \mathcal{W}(E)$, $E \in \mathcal{W}(E)$, $\emptyset \subset \mathcal{W}(E)$, wanté nañu woytu\footnote{faire attention} $E \subset \mathcal{W}(E)$ mën na baña nek dëgg.
\subsection{Selebe(yoon) ak Mbolo ay ëmb}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal ëmb $A$, $B$ ay wàllu been ëmb $E$, \textbf{$A\cap B$ mo di selebe(yoon) $A$ ak $B$} di saamu ëmbeef $x\in E$ yëp yu bok ci $A$ te bok itam ci $B$, manaan $$A\cap B = \big\{x \in E/ x \in A \text{ ak } x \in B\big\}$$
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal ëmb $A$, $B$ ay wàllu been ëmb $E$, \textbf{$A\cup B$ mo di mbolo $A$ ak $B$} di saamu ëmbeef $x\in E$ yëp yu bok ci $A$ walla bok ci $B$, manaan $$A\cup B = \big\{x \in E/ x \in A \text{ walla } x \in B\big\}$$
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal ëmb $A$ ak $B$ ay wàllu ëmb $E$, kon
\begin{itemize}
\item[$\bullet$] $A\cap B \subset A$ ak $A \subset A \cup B$
\item[$\bullet$] $A\cap B \subset B$, ak $ B\subset A \cup B$
\item[$\bullet$] $A\cap A=A$, $A\cup A = A$
\item[$\bullet$] $A\cup E = E$, $A\cap E = A$
\item[$\bullet$] $A\cup \emptyset = A$, $A\cap \emptyset = \emptyset$
\end{itemize}.
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=green!5!white,colframe=white!75!black,title= Tègtal\footnote{Indication ?},
watermark color=white]
Amal ëmb $A$ ak $B$, ay wàllu been ëmb $E$, ngir woné $A=B$ been lañu mën nañu woné ni: ak beep ëmbeef $x\in E$, $x\in A \iff x \in B$. Manaam woné $A \subset B$ ak $B \subset A$
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal ëmb $E$, $F$,
\begin{align*}
A \cup B & = B \cup A \\
A \cap B & = B \cap A \\
(A \cup B) \cup C & = A \cup (B \cup C) \\
(A \cap B) \cap C & = A \cap (B \cap C) \\
(A \cap B) \cup C & = (A \cup C) \cap (B \cup C) \\
(A \cup B) \cap C & = (A \cap C) \cup (B \cap C)
\end{align*}
\end{tcolorbox}
\textbf{Jéemantu:} Woneel tèg bi muj.
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal ëmb $A$, $B$ ak $C$, kon
\begin{itemize}
\item[$\bullet$] $(A \cup B) \cup C = A \cup (B \cup C)$ la ñuy bindë $A \cup B \cup C$
\item[$\bullet$] $(A \cap B) \cap C = A \cap (B \cap C)$ la ñuy bindë $A \cap B \cap C$
\item[$\bullet$] Wanté ken du bindë $A \cap B \cup C$ walla $A \cup B \cap C$ ndaxté léru ñu
\end{itemize}
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal ëmb $A$, $B$ ak $C$, kon
\begin{align*}
A \subset C\text{ ak } B \subset C & \implies A \cup B \subset C \\
C \subset A \text{ ak } C \subset B & \implies C \subset A \cap B
\end{align*}
\end{tcolorbox}
Woné:\\
Amal ëmb $A$, $B$ ak $C$. Nañu woné $A \subset C\text{ ak } B \subset C \implies A \cup B \subset C $
Bu féké $A \subset C\text{ ak } B \subset C$. Amal $x \in A \cup B$, manaam $x\in A$ walla $x\in B$:
\begin{itemize}
\item[$\bullet$] Bu féké $x\in A$, kon, ndaxté $A \subset C$, $x \in C$ tamit
\item[$\bullet$] Bu féké $x\in B$, kon, ndaxté $B \subset C$, $x \in C$ tamit
\end{itemize}
Woné nañu $A \subset C\text{ ak } B \subset C \implies A \cup B \subset C $ ci beep nékin.\\
Ak xeetu woné ji muj, mën nañu woné $C \subset A \text{ ak } C \subset B \implies C \subset A \cap B $
\subsection{Motali been ëmb ci biir been ëmb}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal ëmb $A$ wàllu been ëmb $E$, \textbf{ëmb bi di motali $A$ ci biir $E$}, ñu di ko bindë $$\mathcal{M}_{E}A = \big \{x \in E, \text{ té } x \not \in A\}$$
mo di saamu ëmb yëp yu nék ci $E$ té nekku ñu ci $A$
\end{tcolorbox}
\begin{figure}[ht]
\centering
\includegraphics[scale = 0.5]{image/motali_emb.png}
% \caption{}
\label{fig:motali_emb}
\end{figure}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal ëmb $A$ ab wàllu ëmb $E$. Bu féké ëmb bi di motali $A$ ci biir $E$ lu lér la, manaam munu ñu ko jaxasé ak leenen, kon mën nañu bindë $\Bar{A}$ ngir wax ëmb bi motali ci biir $E$.
\begin{itemize}
\item[$\bullet$] $\mathcal{M}_{E}A \cap A = \emptyset$, $\mathcal{M}_{E}(\mathcal{M}_{E}A) = A$
\item[$\bullet$] $\mathcal{M}_{E}E = \emptyset$, $\mathcal{M}_{E}\emptyset = E$
\end{itemize}
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=blue!5!white,colframe=white!75!black,title= Tèg\footnote{Proposition},
watermark color=white]
Amal ëmb $A$, $B$ ay wàllu ëmb $E$, kon
\begin{align*}
\mathcal{M}_{E}(A \cup B) & = (\mathcal{M}_{E}A) \cap (\mathcal{M}_{E}B) \\
\mathcal{M}_{E}(A \cap B) & = (\mathcal{M}_{E}A) \cup (\mathcal{M}_{E}B) \\
A \subset B & \iff (\mathcal{M}_{E}B) \subset (\mathcal{M}_{E}A) \\
\end{align*}
\end{tcolorbox}
\begin{figure}[ht]
\centering
\includegraphics[scale = 0.5]{image/motali_emb_teg.png}
% \caption{}
\label{fig:motali_emb_teg}
\end{figure}
\subsection{Wañi ëmb ci ëmb}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal ëmb $A$ ak $B$ ay wàllu been ëmb $E$, \textbf{ëmb bi di motali $B$ ci biir $A$}, ñu di ko bindë $$A - B = \big \{x \in E, \text{ té } x \in A \text{ ak } x \not \in B\}$$
mo di saamu ëmbeef yëp yu nék ci $A$ té nekku ñu ci $B$. Yèna say ñu bindé ko $A \backslash B$
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal ëmb $A$ ak $B$ ay wàllu been ëmb $E$, boba
\begin{itemize}
\item[$\bullet$] $A\backslash B = \mathcal{M}_A (A\cap B) = A \cap \mathcal{M}_E (B)$
\end{itemize}
\end{tcolorbox}
\textbf{Rëd fi been natal bu di mandargal kaadu yi muj.}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=red!5!white,colframe=white!75!black,title= Téeki,watermark color=white]
Amal ëmb $A$ ak $B$ ay wàllu been ëmb $E$, \textbf{wuté simetiri ci diganté $A$ ak $B$}, ñu di ko bindë $$A \Delta B = (A-B) \cup (B-A)$$
mo di saamu ëmbeef yëp yu nék ci $A$ té nekku ñu ci $B$.
\end{tcolorbox}
\begin{tcolorbox}[enhanced jigsaw,breakable,pad at break*=1mm, colback=orange!5!white,colframe=white!75!black,title= Seetlu,
watermark color=white]
Amal ëmb $A$ ak $B$ ay wàllu been ëmb $E$, boba
\begin{itemize}
\item[$\bullet$] $A \Delta B = (A \cup B) \backslash (A \cap B)$
\end{itemize}
\end{tcolorbox}
\textbf{Rëd fi been natal bu di mandargal kaadu yi muj.}
\end{document}