-
Notifications
You must be signed in to change notification settings - Fork 3
/
gmn_sampling_degree.c
267 lines (227 loc) · 6.46 KB
/
gmn_sampling_degree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "gmn_sampling.h"
/* lexycographic order over vectors of length 4*/
int compare ( const void *pa, const void *pb )
{
const int *a = pa;
const int *b = pb;
if(a[0] < b[0]){
return -1;
}else if (a[0] > b[0]){
return 1;
}else{
if(a[1] < b[1]){
return -1;
}else if (a[1] > b[1]){
return 1;
}else{
if(a[2] < b[2]){
return -1;
}else if (a[2] > b[2]){
return 1;
}else{
if(a[3] < b[3]){
return -1;
}else if (a[3] > b[3]){
return 1;
}else{
return 0;
}
}
}
}
}
/*
* Selective Gram Schmidt algorithm
*
* @param span_ort Matrix with rows containing the orthogonal vectors
* @param span Matrix with rows containing the vectors to orthogonalize
* @param nvec Number of vectors to orthogonalize (rows of span)
* @param dim Dimension of vectors (columns of span)
*/
int gram_schmidt_sel (double *mort, int *madj, double *mcov,
unsigned int *dim) {
double **span_sel = NULL, **ort_base = NULL;
double *v_proj = NULL;
double *temp = NULL;
int maps[dim[0]][4], ix[dim[0] + 1], cc[dim[0]];
unsigned int i = 0, j = 0, k = 0, skip = 0, allright = 0, jj = 0;
unsigned int n_span = 0, i_current = 0, nzeros = 0;
ix[0] = -1;
if (mort == NULL || madj == NULL || mcov == NULL || dim == NULL) {
return -1;
}
if ((v_proj = calloc(dim[0], sizeof(double))) == NULL) {
return -1;
}
if ((span_sel = calloc(dim[0], sizeof(double *))) == NULL) {
free(v_proj); v_proj = NULL;
return -1;
}
if ((ort_base = calloc(dim[0], sizeof(double *))) == NULL) {
free(span_sel); span_sel = NULL;
free(v_proj); v_proj = NULL;
return -1;
}
for (i = 0; i < dim[0]; i++) {
ort_base[i] = NULL;
}
for (i = 0; i < dim[0]; i++) {
if ((ort_base[i] = calloc(dim[0], sizeof(double))) == NULL) {
for (j = 0; j < i; j++) {
free(ort_base[j]); ort_base[j] = NULL;
}
free(v_proj); v_proj = NULL;
free(span_sel); span_sel = NULL;
free(ort_base); ort_base = NULL;
return -1;
}
}
for (i = 0; i < dim[0]; i++){
maps[i][1] = -1;
}
k = 0;
/* compute degrees, connected components and size of cc and store the index*/
for (i = 0; i < dim[0]; i++) {
if (maps[i][1] < 0){ /*new connected components*/
maps[i][1] = k;
k++; /* increment the connected components*/
}
cc[maps[i][1]]++;
maps[i][2] = 0;
maps[i][3] = i; /* store the index*/
for (j = 0; j < dim[0]; j++) {
if ( (madj[i * dim[0] + j] > 0) && (j != i) ){
maps[i][2]++; /* increase count of degree*/
maps[j][1] = maps[i][1]; /*propagate the index of the conn comp */
}
}
}
/*copy size of con comps*/
for (i = 0; i < dim[0]; i++){
maps[i][0] = cc[maps[i][1]];
}
/* sort the maps */
//qsort(maps, dim[0], sizeof(int) * 4, compare);
nzeros = 0;
while (maps[nzeros][2] == 0){
nzeros++;
}
/* we ortogonalize the disconnected ones */
n_span = 0;
for (j = 0; j < nzeros; j++) {
span_sel[n_span] = mcov + maps[j][3] * dim[0];
n_span++;
}
gram_schmidt(ort_base, span_sel, &n_span, dim, 0);
/* and we copy them in the result */
for (j = 0; j < nzeros; j++) {
for (k = 0; k < dim[0]; k++) {
mort[maps[j][3] * dim[0] + k] = ort_base[j][k];
}
}
/* from now on in the first nzeros components of ort_base there
* are orthogonal vectors for the disconnected nodes
*/
/*mort[dim[0] * dim[0]] = 0;*/
/* now the remaining */
for (i = nzeros; i < dim[0]; i++) {
i_current = maps[i][3] * dim[0];
memcpy(mort + i_current, mcov + i_current, sizeof(double) * dim[0]);
n_span = nzeros;
skip = nzeros;
allright = 1;
for (j = nzeros; j < i; j++) {
if (madj[i_current + maps[j][3]] == 0) {
if ( (ix[n_span - nzeros] == maps[j][3]) && (allright == 1) ){
skip++;
}else{
ix[n_span - nzeros] = maps[j][3];
allright = 0;
}
span_sel[n_span] = mort + maps[j][3] * dim[0];
n_span++;
}
}
ix[n_span - nzeros] = maps[i][3];
ix[n_span - nzeros + 1] = -1; /*security block (could be removed??)*/
span_sel[n_span] = mort + i_current;
n_span++;
/*mort[dim[0] * dim[0]] += skip; */
gram_schmidt(ort_base, span_sel, &n_span, dim, skip);
for (k = 0; k < dim[0]; k++) {
mort[i_current + k] = ort_base[n_span - 1][k];
}
}
free(v_proj); v_proj = NULL;
free(span_sel); span_sel = NULL;
for (i = 0; i < dim[0]; i++) {
free(ort_base[i]); ort_base[i] = NULL;
}
free(ort_base); ort_base = NULL;
return 0;
}
/*
* Gram Schmidt algorithm
*
* @param span_ort Matrix with rows containing the orthogonal vectors
* @param span Matrix with rows containing the vectors to orthogonalize
* @param nvec Number of vectors to orthogonalize (rows of span)
* @param dim Dimension of vectors (columns of span)
* @param skip skip the first skip vector of span (already orthogonal)
*/
int gram_schmidt (double **span_ort, double **span,
unsigned int *nvec, unsigned int *dim, unsigned int skip)
{
double *v_proj = NULL;
unsigned int i = 0, j = 0, k = 0;
double nn = 0;
if (span_ort == NULL || span == NULL || nvec == NULL || dim == NULL) {
return -1;
}
for (i = skip; i < nvec[0]; i++) {
memcpy(span_ort[i], span[i], sizeof(double) * dim[0]);
}
if ((v_proj = calloc(dim[0], sizeof(double))) == NULL) {
return -1;
}
for (i = skip; i < nvec[0]; i++) {
for (j = 0; j < i; j++) {
proj_ort(v_proj, span_ort[i], span_ort[j], dim);
for (k = 0; k < dim[0]; k++) {
span_ort[i][k] -= v_proj[k];
}
}
nn = 0;
for (k = 0; k < dim[0]; k++) {
nn += span_ort[i][k] * span_ort[i][k] ;
}
nn = 1 / sqrt(nn);
for (k = 0; k < dim[0]; k++) {
span_ort[i][k] = span_ort[i][k] * nn ;
}
}
free(v_proj); v_proj = NULL;
return 0;
}
/*
* Orthogonal projection of v onto direction u,
* the vector u is assumed to be normalized
*/
int proj_ort (double *v_proj_u, double *v, double *u, unsigned int *dim)
{
unsigned int i = 0;
double dot_uv = 0, dot_uu = 0;
if (v_proj_u == NULL || v == NULL || u == NULL || dim == NULL) {
return -1;
}
for (i = 0; i < dim[0]; i++) {
dot_uv += (u[i] * v[i]);
}
for (i = 0; i < dim[0]; i++) {
v_proj_u[i] = dot_uv * u[i];
}
return 0;
}