Skip to content

Latest commit

 

History

History
29 lines (17 loc) · 3.66 KB

notes.md

File metadata and controls

29 lines (17 loc) · 3.66 KB

MODE documents (papers, proceedings, preprints, internal documents, books)

MODE documents are assigned an inmutable MODE Note Number, under the scheme MODE_(TYP)_XXX.

  • XXX is a progressive inmutable global identifier
  • TYP is the category, which can change in time according to the publication status. The available categories are (BOO: book, PUB: published in journal, PRE: preprint, PRO: published proceedings, THE: thesis, INT: internal, OTH: other) forbook, publication on journal, preprint, proceeding, thesis, internal, other

Documents are added to the table below, in reverse chronological order (more recent on top)

For documents with no available link, you can upload the document to our material area and link it here using the syntax [pdf](./material/blah.pdf) For INT (internal) documents, you can upload the document to our internal area and link it here using the syntax [pdf](https://github.com/mode-collaboration/documents/internal/blah.pdf)

Note ID Author(s) Title Type Date Reference (if available) Link to document (optional)
MODE_THE_008 Lukas Layer Inference Aware Neural Optimization for Top Pair Cross-Section Measurements with CMS Open Data THE (PhD) t.b.d. - -
MODE_PRE_007 T. Dorigo, S. Guglielmini, J. Kieseler, L. Layer, G.C. Strong Deep Regression of Muon Energy with a K-Nearest Neighbor Algorithm PRE 2022-03-06 arXiv:2203.02841 arXiv:2203.02841
MODE_THE_006 Benedetta dal Sasso Classificazione robusta agli errori sistematici in applicazioni alla fisica delle particelle THE (master's) 2022-02 - pdf
MODE_PUB_005 C. Neubüser, Jan Kieseler, Paul Lujan Optimising longitudinal and lateral calorimeter granularity for software compensation in hadronic showers using deep neural networks PUB 2022-01-29 Eur. Phys. J. C (2022) 82: 92 (2022) doi:10.1140/epjc/s10052-022-10031-7
MODE_PUB_004 J. Kieseler, G.C. Strong, F. Chiandotto, T. Dorigo, L. Layer Calorimetric Measurement of Multi-TeV Muons via Deep Regression PUB 2022-01-27 Eur. Phys. J. C (2022) 82: 79 doi:10.1140/epjc/s10052-022-09993-5
MODE_PUB_003 AMVA4NewPhysics authors (A. Stakia, T. Dorigo, G. Banelli, D. Bortoletto, A. Casa, P. de Castro Manzano, C. Delaere, J. Donini, L. Finos, M. Gallinaro, A. Giammanco, A. Held, F. Jiménez Morales, G. Kotkowski, S-P Liew, F. Maltoni, G. Menardi, I. Papavergou, A. Saggio, B. Scarpa, G.C. Strong, C. Tosciri, J. Varela, P. Vischia, A. Weiler) Advances in Multi-Variate Analysis Methods for New Physics Searches at the Large Hadron Collider PUB 2021-12 Rev. Phys. 7 (2021) 100063 arXiv:2105.07530
MODE_PRE_002 T. Dorigo, P. de Castro Manzano Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review BOO 2020-07-17 arXiv:2007.09121 arXiv:2007.09121
MODE_PUB_001 The MODE Collaboration (A.G. Baydin, K. Cranmer, P. de Castro Manzano, C. Delaere, D. Derkach, J. Donini, T. Dorigo, A. Giammanco, J. Kieseler, L. Layer, G. Louppe, F. Ratnikov, G.C. Strong, M. Tosi, A. Ustyuzhanin, P. Vischia, H. Yarar) Toward Machine Learning Optimization of Experimental Design PUB 2021-03-30 Nuclear Physics News Internationa 31, 1 (2021) doi:10.1080/10619127.2021.1881364