-
Notifications
You must be signed in to change notification settings - Fork 0
/
ellipsoid_fit.py
161 lines (132 loc) · 5.52 KB
/
ellipsoid_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Ellipsoid fit in Python.
Forked from:
https://github.com/aleksandrbazhin/ellipsoid_fit_python
"""
__license__ = "MIT"
import numpy as np
import matplotlib.pyplot as plt
def data_regularize(data, type="spherical", divs=10):
limits = np.array([
[min(data[:, 0]), max(data[:, 0])],
[min(data[:, 1]), max(data[:, 1])],
[min(data[:, 2]), max(data[:, 2])]])
regularized = []
if type == "cubic": # take mean from points in the cube
X = np.linspace(*limits[0], num=divs)
Y = np.linspace(*limits[1], num=divs)
Z = np.linspace(*limits[2], num=divs)
for i in range(divs-1):
for j in range(divs-1):
for k in range(divs-1):
points_in_sector = []
for point in data:
if (point[0] >= X[i] and point[0] < X[i+1] and
point[1] >= Y[j] and point[1] < Y[j+1] and
point[2] >= Z[k] and point[2] < Z[k+1]):
points_in_sector.append(point)
if len(points_in_sector) > 0:
regularized.append(np.mean(np.array(points_in_sector), axis=0))
elif type == "spherical": #take mean from points in the sector
divs_u = divs
divs_v = divs * 2
center = np.array([
0.5 * (limits[0, 0] + limits[0, 1]),
0.5 * (limits[1, 0] + limits[1, 1]),
0.5 * (limits[2, 0] + limits[2, 1])])
d_c = data - center
#spherical coordinates around center
r_s = np.sqrt(d_c[:, 0]**2. + d_c[:, 1]**2. + d_c[:, 2]**2.)
d_s = np.array([
r_s,
np.arccos(d_c[:, 2] / r_s),
np.arctan2(d_c[:, 1], d_c[:, 0])]).T
u = np.linspace(0, np.pi, num=divs_u)
v = np.linspace(-np.pi, np.pi, num=divs_v)
for i in range(divs_u - 1):
for j in range(divs_v - 1):
points_in_sector = []
for k, point in enumerate(d_s):
if (point[1] >= u[i] and point[1] < u[i + 1] and
point[2] >= v[j] and point[2] < v[j + 1]):
points_in_sector.append(data[k])
if len(points_in_sector) > 0:
regularized.append(np.mean(np.array(points_in_sector), axis=0))
# Other strategy of finding mean values in sectors
# p_sec = np.array(points_in_sector)
# R = np.mean(p_sec[:,0])
# U = (u[i] + u[i+1])*0.5
# V = (v[j] + v[j+1])*0.5
# x = R*math.sin(U)*math.cos(V)
# y = R*math.sin(U)*math.sin(V)
# z = R*math.cos(U)
# regularized.append(center + np.array([x,y,z]))
return np.array(regularized)
# https://github.com/minillinim/ellipsoid
def ellipsoid_plot(center, radii, rotation, ax=None, plot_axes=False, cage_color='b', cage_alpha=0.2):
"""Plot an ellipsoid"""
u = np.linspace(0.0, 2.0 * np.pi, 100)
v = np.linspace(0.0, np.pi, 100)
# cartesian coordinates that correspond to the spherical angles:
x = radii[0] * np.outer(np.cos(u), np.sin(v))
y = radii[1] * np.outer(np.sin(u), np.sin(v))
z = radii[2] * np.outer(np.ones_like(u), np.cos(v))
# rotate accordingly
for i in range(len(x)):
for j in range(len(x)):
[x[i, j], y[i, j], z[i, j]] = np.dot([x[i, j], y[i, j], z[i, j]], rotation) + center
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
if plot_axes:
# make some purdy axes
axes = np.array([[radii[0],0.0,0.0],
[0.0,radii[1],0.0],
[0.0,0.0,radii[2]]])
# rotate accordingly
for i in range(len(axes)):
axes[i] = np.dot(axes[i], rotation)
# plot axes
for p in axes:
X3 = np.linspace(-p[0], p[0], 100) + center[0]
Y3 = np.linspace(-p[1], p[1], 100) + center[1]
Z3 = np.linspace(-p[2], p[2], 100) + center[2]
ax.plot(X3, Y3, Z3, color=cage_color)
# plot ellipsoid
ax.plot_wireframe(x, y, z, rstride=4, cstride=4, color=cage_color, alpha=cage_alpha)
# http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit
# for arbitrary axes
def ellipsoid_fit(X):
x = X[:, 0]
y = X[:, 1]
z = X[:, 2]
D = np.array([x * x + y * y - 2 * z * z,
x * x + z * z - 2 * y * y,
2 * x * y,
2 * x * z,
2 * y * z,
2 * x,
2 * y,
2 * z,
1 - 0 * x])
d2 = np.array(x * x + y * y + z * z).T # rhs for LLSQ
u = np.linalg.solve(D.dot(D.T), D.dot(d2))
a = np.array([u[0] + 1 * u[1] - 1])
b = np.array([u[0] - 2 * u[1] - 1])
c = np.array([u[1] - 2 * u[0] - 1])
v = np.concatenate([a, b, c, u[2:]], axis=0).flatten()
A = np.array([[v[0], v[3], v[4], v[6]],
[v[3], v[1], v[5], v[7]],
[v[4], v[5], v[2], v[8]],
[v[6], v[7], v[8], v[9]]])
center = np.linalg.solve(- A[:3, :3], v[6:9])
translation_matrix = np.eye(4)
translation_matrix[3, :3] = center.T
R = translation_matrix.dot(A).dot(translation_matrix.T)
evals, evecs = np.linalg.eig(R[:3, :3] / -R[3, 3])
evecs = evecs.T
radii = np.sqrt(1. / np.abs(evals))
radii *= np.sign(evals)
return center, evecs, radii, v