-
Notifications
You must be signed in to change notification settings - Fork 0
/
nca_training.py
155 lines (131 loc) · 5.62 KB
/
nca_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import random
import sys
from multiprocessing import Process
from typing import List
import matplotlib.pylab as pl
import numpy as np
import tensorflow as tf
import tqdm
from nca import Model
from utils import ShapeUtils, PicklePersist
def expand_y_label(x, y):
y_res = np.zeros(list(x.shape) + [len(x)])
# broadcast y to match x shape:
y_expanded = np.broadcast_to(y, x.T.shape).T
y_res[x >= 0.1, y_expanded[x >= 0.1]] = 1.0
return y_res.astype(np.float32)
def train(x_train: List[List[List]], num_iterations: int = 1500, seed: int = 0, plots: bool = False,
interval: range = None, smaller_net: bool = False):
random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
model = Model.standard_model(class_n=len(x_train), n_extra_channels=10,
n_filters=30) if smaller_net else Model.standard_model(class_n=len(x_train))
x_train = np.array(x_train).astype(np.float32)
y_train = np.array(list(range(len(x_train))))
y_train = expand_y_label(x_train, y_train)
trainer = tf.keras.optimizers.Adam()
losses = []
accuracies = []
x0 = tf.constant(x_train) # (bs, y, x)
mask = tf.expand_dims(x0, axis=3) # (bs, y, x, 1)
y0 = tf.constant(y_train) # (bs, y, x, num_classes)
for _ in tqdm.tqdm(range(num_iterations)):
state = model.initialize(x0)
with tf.GradientTape() as tape:
if interval is None:
for _ in range(random.randint(9, 29)):
update = model(state) # (bs, 5, 4, n)
random_mask = tf.cast(tf.random.uniform(state.shape) < 0.5, tf.float32)
update = update * mask * random_mask # mask out updates to "dead" cells (bs, y, x, n)
state = state + update # (bs, y, x, n)
x = model.classify(state) # (1, y, x, n_classes)
loss = tf.reduce_mean((y0 - x) ** 2)
else:
loss = 0
for _ in range(interval.start):
update = model(state) # (bs, 5, 4, n)
random_mask = tf.cast(tf.random.uniform(state.shape) < 0.5, tf.float32)
update = update * mask * random_mask # mask out updates to "dead" cells (bs, y, x, n)
state = state + update # (bs, y, x, n)
for _ in interval:
update = model(state) # (bs, 5, 4, n)
random_mask = tf.cast(tf.random.uniform(state.shape) < 0.5, tf.float32)
update = update * mask * random_mask # mask out updates to "dead" cells (bs, y, x, n)
state = state + update # (bs, y, x, n)
x = model.classify(state) # (1, y, x, n_classes)
loss += tf.reduce_mean((y0 - x) ** 2)
loss /= len(interval)
grads = tape.gradient(loss, model.trainable_weights)
trainer.apply_gradients(zip(grads, model.trainable_weights))
model.reset_diag_kernel()
losses.append(loss)
y_label = tf.argmax(y0, axis=-1) # (bs, y, x)
x_label = tf.argmax(x, axis=-1) # (bs, y, x)
correct = tf.cast(tf.equal(x_label, y_label), tf.float32) # (bs, y, x)
accuracy = tf.reduce_sum(correct * x0) / tf.reduce_sum(x0)
accuracies.append(accuracy.numpy().item())
if plots:
pl.figure(figsize=(10, 4))
pl.title('loss')
pl.xlabel('Number of steps')
pl.ylabel('loss')
pl.plot(losses, label="ca")
pl.legend()
pl.show()
pl.figure(figsize=(10, 4))
pl.title('Accuracies')
pl.xlabel('Number of steps')
pl.ylabel('Accuracies')
pl.plot(accuracies, label="ca")
pl.legend()
pl.show()
return model, losses, accuracies
def train_and_pickle(set_number: int, num_iterations: int = 1500, seed: int = 0, save_progress=True,
interval=range(25, 50), smaller_net: bool = False):
shapes = ShapeUtils.load_shapes_from_file(f'shapes/sample_creatures_set{str(set_number)}.txt')
model, losses, accuracies = train(shapes, num_iterations, seed=seed, plots=False, interval=interval,
smaller_net=smaller_net)
if save_progress:
with open(f'training/progress{"_small" if smaller_net else ""}_seed_{seed}_{set_number}.txt', 'w') as f:
f.write('iteration;loss;accuracy\n')
for iteration in range(num_iterations):
f.write(f'{iteration};{losses[iteration].numpy()};{accuracies[iteration]}\n')
perceive_kernel, pb = model.perceive.layers[0].get_weights()
dk1, db1 = model.dmodel.layers[0].get_weights()
dk2, db2 = model.dmodel.layers[1].get_weights()
dictionary = {
'dmodel_bias_1': db1,
'dmodel_bias_2': db2,
'dmodel_kernel_1': dk1[0][0][:][:],
'dmodel_kernel_2': dk2[0][0][:][:],
'perceive_bias': pb,
'pk_bottom': perceive_kernel[2][1][:][:],
'pk_left': perceive_kernel[1][0][:][:],
'pk_right': perceive_kernel[1][2][:][:],
'pk_self': perceive_kernel[1][1][:][:],
'pk_top': perceive_kernel[0][1][:][:]
}
PicklePersist.compress_pickle(f'parameters/params{"_small" if smaller_net else ""}_seed{seed}_set{str(set_number)}',
data=dictionary)
if __name__ == '__main__':
target_set = 1
n_iterations = 1500
seed = 0
smaller_net = False
args = sys.argv[1:]
for arg in args:
if arg.startswith('small'):
smaller_net = arg.replace('small=', '').upper().startswith("T")
if arg.startswith('all'):
for target_set in range(1, 5):
for seed in range(5):
print(f"SET {target_set} - SEED {seed}")
train_and_pickle(target_set, n_iterations, seed, smaller_net=smaller_net)
if arg.startswith('set'):
target_set = int(arg.replace('set=', ''))
if arg.startswith('n_it'):
n_iterations = int(arg.replace('n_it=', ''))
if arg.startswith('seed'):
seed = int(arg.replace('seed=', ''))
train_and_pickle(target_set, n_iterations, seed, smaller_net=smaller_net)