diff --git a/book/geospatial/leafmap.ipynb b/book/geospatial/leafmap.ipynb index 64e43de..ff00b0f 100644 --- a/book/geospatial/leafmap.ipynb +++ b/book/geospatial/leafmap.ipynb @@ -513,7 +513,7 @@ "source": [ "m = leafmap.Map()\n", "url = \"https://github.com/opengeos/datasets/releases/download/world/world_cities.csv\"\n", - "m.add_marker_cluster(url, x=\"latitude\", y=\"longitude\", layer_name=\"World cities\")\n", + "m.add_marker_cluster(url, x=\"longitude\", y=\"latitude\", layer_name=\"World cities\")\n", "m" ] }, @@ -1524,7 +1524,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.7" + "version": "3.11.8" } }, "nbformat": 4, diff --git a/book/geospatial/leafmap.md b/book/geospatial/leafmap.md index 95fb219..9b75366 100644 --- a/book/geospatial/leafmap.md +++ b/book/geospatial/leafmap.md @@ -264,7 +264,7 @@ For a large number of points, you can group them into clusters. This method redu ```{code-cell} ipython3 m = leafmap.Map() url = "https://github.com/opengeos/datasets/releases/download/world/world_cities.csv" -m.add_marker_cluster(url, x="latitude", y="longitude", layer_name="World cities") +m.add_marker_cluster(url, x="longitude", y="latitude", layer_name="World cities") m ```