-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
309 lines (248 loc) · 13.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gc
import json
import math
import shutil
import subprocess
from copy import deepcopy
import torch.optim
from torch.utils.data import ConcatDataset
from transformers import BertTokenizerFast, DataCollatorWithPadding, \
ViTImageProcessor, Mask2FormerImageProcessor
import compression.pruner as compress_p
from args import arg_parser, modify_args
from config import *
from data_utils import prepare_datasets
from trainer_utils import *
from utils import get_model_param_keys
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
args = arg_parser.parse_args()
args = modify_args(args)
torch.manual_seed(args.seed)
tokenizer_dispatcher = {
'bert-base-uncased': BertTokenizerFast,
'bert-large-uncased': BertTokenizerFast,
'vit-base': ViTImageProcessor,
'vit-large': ViTImageProcessor,
'm2f': Mask2FormerImageProcessor
}
def finetune(model, args, data_content, training_params, model_path=None, for_eval_flag=True, tag='default'):
trainer = prepare_traced_trainer(model, args, data_content, training_params, for_eval_flag=for_eval_flag, tag=tag)
max_steps = math.ceil(training_params['num_train_epochs'] * len(data_content['train']))
prepare_masked_trainer(args, trainer, max_steps)
if os.path.exists(get_path(args, 'OPT_STATE_PATH')):
opt_states = torch.load(get_path(args, 'OPT_STATE_PATH'))
init_masks = torch.load(get_path(args, 'INIT_MASKS_PATH'))
keys = get_model_param_keys(trainer.model)
keys = keys[0] + keys[1]
opt_states_to_load = trainer.optimizer.state_dict()
for i in range(len(keys)):
if 'embeddings.mask_token' in keys[i]:
continue
key_ = '.'.join(keys[i].split('.')[:-1])
_key = keys[i].split('.')[-1]
try:
init_mask = init_masks[key_][_key].to('cpu')
except:
# print(f'Could not find init mask for {key}')
init_mask = None
if init_mask is not None:
if _key == 'weight':
if ('attention' in key_ and ('query' in key_ or 'key' in key_ or 'value' in key_)) or \
('intermediate' in key_):
init_mask = init_mask.sum(dim=1).nonzero()[:, 0]
opt_states_to_load['state'][i] = {
'step': opt_states[i]['step'],
'exp_avg': opt_states[i]['exp_avg'][init_mask].bfloat16(),
'exp_avg_sq': opt_states[i]['exp_avg_sq'][init_mask].bfloat16()}
elif 'output' in key_:
init_mask = init_mask.sum(dim=0).nonzero()[:, 0]
opt_states_to_load['state'][i] = {
'step': opt_states[i]['step'],
'exp_avg': opt_states[i]['exp_avg'][:, init_mask].bfloat16(),
'exp_avg_sq': opt_states[i]['exp_avg_sq'][:, init_mask].bfloat16()}
else:
raise NotImplementedError
elif _key == 'relative_position_bias_table':
opt_states_to_load['state'][i] = {
'step': opt_states[i]['step'],
'exp_avg': opt_states[i]['exp_avg'][:, init_mask].bfloat16(),
'exp_avg_sq': opt_states[i]['exp_avg_sq'][:, init_mask].bfloat16()}
else:
if ('attention' in key_ and ('query' in key_ or 'key' in key_ or 'value' in key_)) or \
('intermediate' in key_):
init_mask = init_mask.nonzero()[:, 0]
opt_states_to_load['state'][i] = {
'step': opt_states[i]['step'],
'exp_avg': opt_states[i]['exp_avg'][init_mask].bfloat16(),
'exp_avg_sq': opt_states[i]['exp_avg_sq'][init_mask].bfloat16()}
elif 'output' in key_:
opt_states_to_load['state'][i] = {
'step': opt_states[i]['step'],
'exp_avg': opt_states[i]['exp_avg'].bfloat16(),
'exp_avg_sq': opt_states[i]['exp_avg_sq'].bfloat16()}
else:
raise NotImplementedError
trainer.optimizer.load_state_dict(opt_states_to_load)
trainer.train()
trainer_state = trainer.state
trainer_state.opt_state = trainer.optimizer.state_dict()['state']
print('Completed finetuning')
if model_path:
torch.save(model, model_path)
print(f'Saved to {model_path}')
del trainer
return model, trainer_state
def prepare_data(args, eval_key):
if 'vit' in args.arch:
tokenizer = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k", cache_dir='cache')
elif 'm2f' in args.arch:
tokenizer = Mask2FormerImageProcessor.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-semantic", cache_dir='cache')
else:
tokenizer = tokenizer_dispatcher[args.arch].from_pretrained(args.arch, cache_dir='cache')
train_dataset, validation_datasets, test_dataset = prepare_datasets(args.arch, args.task, args.data, tokenizer,
args.data_root, eval_key)
dtype = torch.float32
if args.task == 'img_class':
def collate_fn_cls(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
if args.data == 'cifar100':
labels = torch.tensor(np.array([example["fine_label"] for example in examples]))
else:
labels = torch.tensor(np.array([example["label"] for example in examples]))
return {"pixel_values": pixel_values.to(dtype), "labels": labels}
data_collator = collate_fn_cls
elif args.task == 'img_seg':
def collate_fn_seg(examples):
data = []
for key in examples[0].keys():
if key == 'class_labels':
key_ = 'labels'
else:
key_ = key
if 'labels' in key:
val = [torch.tensor(np.stack(e[key], 0))[0] for e in examples]
else:
val = np.concatenate([np.stack(e[key], 0) for e in examples])
val = torch.tensor(val).to(dtype)
data.append((key_, val))
return dict(data)
data_collator = collate_fn_seg
else:
validation_datasets = ConcatDataset([d for d in validation_datasets.values()])
data_collator = DataCollatorWithPadding(tokenizer)
return {'train': train_dataset, 'val': validation_datasets, 'test': test_dataset,
'collator': data_collator, 'tokenizer': tokenizer}
# @profile
def execute_main(args):
model_name = args.arch
if os.path.exists(get_path(args, 'MAIN_FOLDER_DIR', temp=False)):
shutil.rmtree(get_path(args, 'MAIN_FOLDER_DIR', temp=False))
Path(get_path(args, 'TRAINER_FOLDER_DIR')).mkdir(exist_ok=True, parents=True)
Path(get_path(args, 'MODEL_FOLDER_DIR')).mkdir(exist_ok=True, parents=True)
with open(get_path(args, 'ARGS_PATH'), "w") as f:
json.dump(args.__dict__, f, indent=2)
config = Config(args)
data_content = prepare_data(args, 'val')
if args.task == 'img_class':
if args.data == 'cifar100':
id2label = {id: label for id, label in enumerate(data_content['train'].features['fine_label'].names)}
else:
id2label = {id: label for id, label in enumerate(data_content['train'].features['label'].names)}
label2id = {label: id for id, label in id2label.items()}
model = build_model(model_name, args.task, args.data, id2label=id2label, label2id=label2id)
else:
model = build_model(model_name, args.task, args.data)
torch.save(model, get_path(args, 'INIT_MODEL_PATH'))
total_num_steps = 0
print('init_prune_0 starts...')
model = compress_p.init_pruning(model, args, config, data_content, tag='init_prune_0', beta=-1)
if args.mask_finetune_flag:
sparsity_ratio_mul = 1
print('iter_prune_0 starts...')
compress_p.iter_pruning(model, args, config, data_content, tag='iter_prune_0', sparsity_ratio_mul=sparsity_ratio_mul)
model = torch.load(get_path(args, 'COMPRESSED_MODEL_PATH'), map_location=args.comp_device)
else:
model = model.to(args.comp_device)
model_path = get_path(args, 'COMPRESSED_MODEL_PATH')
print('finetune_0 starts')
model = model.to(args.device)
training_params = deepcopy(config.get_init_training_params(args.arch, args.data))
_, trainer_state = finetune(model, args, data_content, training_params,
get_path(args, 'COMPRESSED_MODEL_PATH'), tag='finetune_0')
total_num_steps += trainer_state.global_step
Path(get_path(args, 'TRAINER_FOLDER_DIR', temp=False) + f'/runs').mkdir(exist_ok=True, parents=True)
try:
os.rename(get_path(args, 'TRAINER_FOLDER_DIR') + f'/runs/finetune_0',
get_path(args, 'TRAINER_FOLDER_DIR', temp=False) + f'/runs/finetune')
except:
pass
tag = 'validate_0'
print(f'{tag} starts')
val_output = predict(model_path, args, data_content, tag=tag)
val_score = val_output.metrics[f'{tag}_{args.metric_name}']
best_val_score = val_score
best_val_output = val_output
subprocess.run(["cp", "-r", get_path(args, 'MODEL_FOLDER_DIR'), get_path(args, 'MAIN_FOLDER_DIR', temp=False)])
num_rounds = args.num_pruning_rounds
for i in range(num_rounds):
print(f'Round: {i + 1}/{num_rounds} - Starting full model update...')
init_model = compress_p.update_full_model(model, args, config, trainer_state, total_num_steps)
print(f'Round: {i + 1}/{num_rounds} - Starting init pruning...')
beta_ = -1
model = compress_p.init_pruning(init_model, args, config, data_content,
tag=f'init_prune_{i + 1}', beta=beta_)
del init_model
if args.mask_finetune_flag:
sparsity_ratio_mul = i / max(1, num_rounds - 1)
print(f'Round: {i + 1}/{num_rounds} - Starting iter pruning with mul: {sparsity_ratio_mul}')
compress_p.iter_pruning(model, args, config, data_content,
tag=f'iter_prune_{i + 1}',
sparsity_ratio_mul=sparsity_ratio_mul) # determine what to update
model = torch.load(get_path(args, 'COMPRESSED_MODEL_PATH'), map_location=args.comp_device)
training_params = deepcopy(config.get_iter_training_params(args.arch, args.data))
print(f'Round: {i + 1}/{num_rounds} - Starting finetuning with initial learning rate '
f'{training_params["learning_rate"]: .6f}')
model = model.to(args.device)
_, trainer_state = finetune(model, args, data_content, training_params,
get_path(args, 'COMPRESSED_MODEL_PATH'),
for_eval_flag=False, tag=f'finetune_{i + 1}')
total_num_steps += trainer_state.global_step
gc.collect()
if args.device == 'mps':
torch.mps.empty_cache()
elif args.device == 'cuda':
torch.cuda.empty_cache()
gc.collect()
print(f'Round: {i + 1}/{num_rounds} - Validating...')
val_output = predict(model_path, args, data_content, tag=f'validate_{i + 1}')
val_score = val_output.metrics[f'validate_{i + 1}_{args.metric_name}']
if val_score >= best_val_score:
best_val_score = val_score
best_val_output = val_output
subprocess.run(
["cp", "-r", get_path(args, 'MODEL_FOLDER_DIR'), get_path(args, 'MAIN_FOLDER_DIR', temp=False)])
Path(get_path(args, 'TRAINER_FOLDER_DIR', temp=False) + f'/runs').mkdir(exist_ok=True, parents=True)
subprocess.run(["rm", "-rf", get_path(args, 'TRAINER_FOLDER_DIR', temp=False) + f'/runs/finetune'])
os.rename(get_path(args, 'TRAINER_FOLDER_DIR') + f'/runs/finetune_{i + 1}',
get_path(args, 'TRAINER_FOLDER_DIR', temp=False) + f'/runs/finetune')
else:
subprocess.run(["rm", "-rf", get_path(args, 'TRAINER_FOLDER_DIR') + f'/runs/finetune_{i + 1}'])
print('Testing the finetuned model')
model_path = get_path(args, 'COMPRESSED_MODEL_PATH', temp=False)
test_output = predict(model_path, args, data_content, tag=args.final_eval_split)
test_metric = test_output.metrics
output_metric_dict = {'val_metric': best_val_output.metrics,
'test_metric': test_metric}
subprocess.run(["rm", "-rf", get_path(args, 'MODEL_FOLDER_DIR')])
return output_metric_dict
if __name__ == '__main__':
run_mode = args.run_mode
if run_mode == 'train':
output_metric_dict = execute_main(args)
elif run_mode == 'evaluate':
model_path = args.evaluate_from
data_content = prepare_data(args, args.final_eval_split)
output_metric_dict = predict(model_path, args, data_content, tag='test')
else:
raise NotImplementedError