forked from pkrusche/vt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
estimate.cpp
481 lines (414 loc) · 16.6 KB
/
estimate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/* The MIT License
Copyright (c) 2014 Adrian Tan <atks@umich.edu>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "estimate.h"
namespace
{
class Igor : Program
{
public:
std::string version;
///////////
//options//
///////////
std::string input_vcf_file;
std::string output_vcf_file;
std::vector<GenomeInterval> intervals;
std::string interval_list;
std::string arg_sample_list;
bool compute_estimate[NO_EST];
char** samples;
int32_t *imap;
int32_t nsamples;
bool print_sites_only;
///////
//i/o//
///////
BCFOrderedReader *odr;
BCFOrderedWriter *odw;
//////////
//filter//
//////////
std::string fexp;
Filter filter;
bool filter_exists;
/////////
//stats//
/////////
int32_t no_samples;
int32_t no_variants;
/////////
//tools//
/////////
VariantManip *vm;
Estimator *est;
/**
* Parse filters. Processes the filter list first followed by the interval string. Duplicates are dropped.
*
* @filters - filters stored in this vector
* @filter_string - comma delimited filters in a string
*/
void parse_estimators(bool compute_estimate[], std::string estimates_string)
{
for (size_t i=0; i<NO_EST; ++i)
{
compute_estimate[i] = false;
}
std::vector<std::string> v;
if (estimates_string!="")
split(v, ",", estimates_string);
for (size_t i=0; i<v.size(); ++i)
{
if (v[i]=="AF")
{
compute_estimate[EST_AF] = true;
}
else if (v[i]=="HWEAF")
{
compute_estimate[EST_HWEAF] = true;
}
else if (v[i]=="MLEAF")
{
compute_estimate[EST_MLEAF] = true;
}
else if (v[i]=="HWE")
{
compute_estimate[EST_HWEAF] = true;
compute_estimate[EST_MLEAF] = true;
compute_estimate[EST_HWE] = true;
}
else if (v[i]=="AB")
{
compute_estimate[EST_HWEAF] = true;
compute_estimate[EST_AB] = true;
}
else if (v[i]=="FIC")
{
compute_estimate[EST_HWEAF] = true;
compute_estimate[EST_FIC] = true;
}
else
{
fprintf(stderr, "[%s:%d %s] Estimate type not recognized: %s\n", __FILE__, __LINE__, __FUNCTION__, v[i].c_str());
}
}
size_t no_est = 0;
for (size_t i=0; i<NO_EST; ++i)
{
if (compute_estimate[i])
{
++no_est;
}
}
if (no_est==0)
{
fprintf(stderr, "[%s:%d %s] No valid estimate types recognized.\n", __FILE__, __LINE__, __FUNCTION__);
exit(1);
}
}
Igor(int argc, char ** argv)
{
version = "0.5";
//////////////////////////
//options initialization//
//////////////////////////
try
{
std::string desc = "Compute variant based estimates.\n\n"
" AF Genotype (GT) based allele frequencies\n"
" If genotypes are unavailable, best guess\n"
" genotypes are inferred based on genotype\n"
" likelihoods (GL or PL)\n"
" AC : Alternate Allele counts\n"
" AN : Total allele counts\n"
" NS : No. of samples.\n"
" AF : Alternate allele frequencies.\n"
" MLEAF GL based allele frequencies estimates\n"
" MLEAF : Alternate allele frequency derived from MLEGF\n"
" MLEGF : Genotype frequencies.\n"
" HWEAF GL based allele frequencies estimates assuming HWE\n"
" HWEAF : Alternate allele frequencies\n"
" HWEGF : Genotype frequencies derived from HWEAF.\n"
" HWE GL based Hardy-Weinberg statistics.\n"
" HWE_LLR : log likelihood ratio\n"
" HWE_LPVAL : log p-value\n"
" HWE_DF : degrees of freedom\n"
" AB GL based Allele Balance.\n"
" FIC GL based Inbreeding Coefficient\n"
" \n";
TCLAP::CmdLine cmd(desc, ' ', version);
VTOutput my;
cmd.setOutput(&my);
TCLAP::ValueArg<std::string> arg_intervals("i", "intervals", "Intervals", false, "", "str", cmd);
TCLAP::ValueArg<std::string> arg_interval_list("I", "interval-list", "File containing list of intervals", false, "", "file", cmd);
TCLAP::ValueArg<std::string> arg_fexp("f", "f", "filter expression []", false, "", "str", cmd);
TCLAP::ValueArg<std::string> arg_estimates("e", "e", "comma separated estimates to be computed []", false, "", "str", cmd);
TCLAP::ValueArg<std::string> arg_output_vcf_file("o", "o", "output VCF/VCF.GZ/BCF file [-]", false, "-", "str", cmd);
TCLAP::SwitchArg arg_print_sites_only("s", "s", "print site information only without genotypes [false]", cmd, false);
TCLAP::UnlabeledValueArg<std::string> arg_input_vcf_file("<in.vcf>", "input VCF file", true, "", "file", cmd);
cmd.parse(argc, argv);
input_vcf_file = arg_input_vcf_file.getValue();
output_vcf_file = arg_output_vcf_file.getValue();
parse_intervals(intervals, arg_interval_list.getValue(), arg_intervals.getValue());
print_sites_only = arg_print_sites_only.getValue();
fexp = arg_fexp.getValue();
parse_estimators(compute_estimate, arg_estimates.getValue());
}
catch (TCLAP::ArgException &e)
{
std::cerr << "error: " << e.error() << " for arg " << e.argId() << "\n";
abort();
}
};
void initialize()
{
//////////////////////
//i/o initialization//
//////////////////////
odr = new BCFOrderedReader(input_vcf_file, intervals);
odw = new BCFOrderedWriter(output_vcf_file);
if (print_sites_only)
{
odw->link_hdr(bcf_hdr_subset(odr->hdr, 0, 0, 0));
}
else
{
odw->link_hdr(odr->hdr);
}
if (compute_estimate[EST_AF])
{
bcf_hdr_append(odw->hdr, "##INFO=<ID=AC,Number=A,Type=Integer,Description=\"Alternate Allele Counts\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=AN,Number=1,Type=Integer,Description=\"Total Number Allele Counts\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=NS,Number=1,Type=Integer,Description=\"Number of Samples With Data\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=AF,Number=A,Type=Float,Description=\"Alternate Allele Frequency\">\n");
}
if (compute_estimate[EST_GF])
{
bcf_hdr_append(odw->hdr, "##INFO=<ID=GC,Number=G,Type=Integer,Description=\"Genotype Counts\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=GN,Number=1,Type=Integer,Description=\"Total Number of Genotypes Counts\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=GF,Number=G,Type=Float,Description=\"Genotype Frequency\">\n");
}
if (compute_estimate[EST_HWEAF])
{
bcf_hdr_append(odw->hdr, "##INFO=<ID=HWEAF,Number=A,Type=Float,Description=\"Genotype likelihood based MLE Allele Frequency assuming HWE\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=HWEGF,Number=G,Type=Float,Description=\"Genotype likelihood based MLE Genotype Frequency assuming HWE\">\n");
}
if (compute_estimate[EST_MLEAF])
{
bcf_hdr_append(odw->hdr, "##INFO=<ID=MLEAF,Number=A,Type=Float,Description=\"Genotype likelihood based MLE Allele Frequency\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=MLEGF,Number=G,Type=Float,Description=\"Genotype likelihood based MLE Genotype Frequency\">\n");
}
if (compute_estimate[EST_HWE])
{
bcf_hdr_append(odw->hdr, "##INFO=<ID=HWE_LLR,Number=1,Type=Float,Description=\"Genotype likelihood based Hardy Weinberg ln(Likelihood Ratio)\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=HWE_LPVAL,Number=1,Type=Float,Description=\"Genotype likelihood based Hardy Weinberg Likelihood Ratio Test Statistic ln(p-value)\">\n");
bcf_hdr_append(odw->hdr, "##INFO=<ID=HWE_DF,Number=1,Type=Integer,Description=\"Degrees of freedom for Genotype likelihood based Hardy Weinberg Likelihood Ratio Test Statistic\">\n");
}
if (compute_estimate[EST_FIC])
{
bcf_hdr_append(odw->hdr, "##INFO=<ID=FIC,Number=1,Type=Float,Description=\"Genotype likelihood based Inbreeding Coefficient\">\n");
}
if (compute_estimate[EST_AB])
{
bcf_hdr_append(odw->hdr, "##INFO=<ID=AB,Number=1,Type=Float,Description=\"Genotype likelihood based Allele Balance\">\n");
}
/////////////////////////
//filter initialization//
/////////////////////////
filter.parse(fexp.c_str());
filter_exists = fexp=="" ? false : true;
////////////////////////
//stats initialization//
////////////////////////
no_samples = bcf_hdr_nsamples(odr->hdr);
no_variants = 0;
if (!no_samples)
{
fprintf(stderr, "[%s:%d %s] No samples in VCF file: %s\n", __FILE__, __LINE__, __FUNCTION__, input_vcf_file.c_str());
exit(1);
}
///////////////////////
//tool initialization//
///////////////////////
vm = new VariantManip("");
est = new Estimator();
}
void estimate()
{
bcf1_t *v = odw->get_bcf1_from_pool();
bcf_hdr_t *h = odr->hdr;
Variant variant;
int32_t *gts = NULL;
int32_t *pls = NULL;
int32_t *dps = NULL;
int32_t n_gts = 0;
int32_t n_pls = 0;
int32_t n_dps = 0;
odw->write_hdr();
while(odr->read(v))
{
variant.clear();
bool printed = false;
vm->classify_variant(h, v, variant);
if (filter_exists && !filter.apply(h,v,&variant))
{
continue;
}
bcf_unpack(v, BCF_UN_ALL);
int32_t ploidy = bcf_get_genotypes(odr->hdr, v, >s, &n_gts);
ploidy /= no_samples;
if (!n_gts)
{
continue;
}
bcf_get_format_int32(odr->hdr, v, "PL", &pls, &n_pls);
int32_t no_alleles = bcf_get_n_allele(v);
if (!n_pls)
{
continue;
}
float qual = 0;
int32_t n = 0;
est->compute_qual(pls, no_samples, ploidy, no_alleles, qual, n);
if (n)
{
bcf_set_qual(v, qual);
}
int32_t no_genotypes = bcf_an2gn(no_alleles);
if (compute_estimate[EST_AF])
{
int32_t g[ploidy];
for (int32_t i=0; i<ploidy; ++i) g[i]=0;
int32_t AC[no_alleles];
float AF[no_alleles];
for (int32_t i=0; i<no_alleles; ++i) AC[i]=0;
int32_t AN=0;
int32_t NS=0;
int32_t GC[no_genotypes];
int32_t GN=0;
float GF[no_genotypes];
est->compute_af(gts, no_samples, ploidy, no_alleles, AC, AN, AF, GC, GN, GF, NS);
int32_t* AC_PTR = &AC[1];
bcf_update_info_int32(odw->hdr, v, "AC", AC_PTR, no_alleles-1);
bcf_update_info_int32(odw->hdr, v, "AN", &AN, 1);
float* AF_PTR = &AF[1];
bcf_update_info_float(odw->hdr, v, "AF", AF_PTR, no_alleles-1);
if (GN)
{
bcf_update_info_int32(odw->hdr, v, "GC", GC, no_genotypes);
bcf_update_info_int32(odw->hdr, v, "GN", &GN, 1);
bcf_update_info_float(odw->hdr, v, "GF", GF, no_genotypes);
}
bcf_update_info_int32(odw->hdr, v, "NS", &NS, 1);
}
float MLE_HWE_AF[no_alleles];
float MLE_HWE_GF[no_genotypes];
n = 0;
est->compute_gl_af_hwe(pls, no_samples, ploidy,no_alleles, MLE_HWE_AF, MLE_HWE_GF, n, 1e-20);
if (n)
{
float* MLE_HWE_AF_PTR = &MLE_HWE_AF[1];
bcf_update_info_float(odw->hdr, v, "HWEAF", MLE_HWE_AF_PTR, no_alleles-1);
bcf_update_info_float(odw->hdr, v, "HWEGF", &MLE_HWE_GF, no_genotypes);
}
float MLE_AF[no_alleles];
float MLE_GF[no_genotypes];
n = 0;
est->compute_gl_af(pls, no_samples, ploidy,no_alleles, MLE_AF, MLE_GF, n, 1e-20);
if (n)
{
float* MLE_AF_PTR = &MLE_AF[1];
bcf_update_info_float(odw->hdr, v, "MLEAF", MLE_AF_PTR, no_alleles-1);
bcf_update_info_float(odw->hdr, v, "MLEGF", &MLE_GF, no_genotypes);
}
float lrts;
float logp;
int32_t df;
n = 0;
est->compute_hwe_lrt(pls, no_samples, ploidy,
no_alleles, MLE_HWE_GF, MLE_GF, n,
lrts, logp, df);
if (n)
{
bcf_update_info_float(odw->hdr, v, "HWE_LLR", &lrts, 1);
bcf_update_info_float(odw->hdr, v, "HWE_LPVAL", &logp, 1);
bcf_update_info_int32(odw->hdr, v, "HWE_DF", &df, 1);
}
float f;
n = 0;
est->compute_gl_fic(pls, no_samples, ploidy,
MLE_HWE_AF, no_alleles, MLE_GF,
f, n);
if (n)
{
bcf_update_info_float(odw->hdr, v, "FIC", &f, 1);
}
bcf_get_format_int32(odr->hdr, v, "DP", &dps, &n_dps);
if (n_dps)
{
float ab;
n = 0;
est->compute_gl_ab(pls, no_samples, ploidy,
dps, MLE_GF, no_alleles,
ab, n);
if (n)
{
bcf_update_info_float(odw->hdr, v, "AB", &ab, 1);
}
}
if (print_sites_only)
{
bcf_subset(odw->hdr, v, 0, 0);
}
odw->write(v);
++no_variants;
}
if(n_gts) free(gts);
if(n_pls) free(pls);
if(n_dps) free(dps);
odw->close();
};
void print_options()
{
std::clog << "estimate v" << version << "\n";
std::clog << "\n";
std::clog << "Options: input VCF File " << input_vcf_file << "\n";
print_str_op(" [f] filter ", fexp);
print_int_op(" [i] Intervals ", intervals);
std::clog << "\n";
}
void print_stats()
{
std::clog << "\n";
std::clog << "stats: variants : " << no_variants << "\n";
std::clog << "\n";
};
~Igor()
{
};
private:
};
}
void estimate(int argc, char ** argv)
{
Igor igor(argc, argv);
igor.print_options();
igor.initialize();
igor.estimate();
igor.print_stats();
}