-
Notifications
You must be signed in to change notification settings - Fork 3
/
render.py
224 lines (188 loc) · 7.94 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Render script."""
import concurrent.futures
import functools
import glob
import os
import time
import gc
from absl import app
import torch
import gin
from internal import configs
from internal import datasets
from internal import models
from internal import train_utils
from internal import utils
from matplotlib import cm
import mediapy as media
import numpy as np
configs.define_common_flags()
def create_videos(config, base_dir, out_dir, out_name, num_frames):
"""Creates videos out of the images saved to disk."""
names = [n for n in config.checkpoint_dir.split('/') if n]
# Last two parts of checkpoint path are experiment name and scene name.
exp_name, scene_name = names[-2:]
video_prefix = f'{scene_name}_{exp_name}_{out_name}'
zpad = max(3, len(str(num_frames - 1)))
def idx_to_str(idx):
return str(idx).zfill(zpad)
utils.makedirs(base_dir)
# Load one example frame to get image shape and depth range.
depth_file = os.path.join(out_dir, f'distance_mean_{idx_to_str(0)}.tiff')
depth_frame = utils.load_img(depth_file)
shape = depth_frame.shape
p = config.render_dist_percentile
distance_limits = np.percentile(depth_frame.flatten(), [p, 100 - p])
lo, hi = [config.render_dist_curve_fn(x) for x in distance_limits]
print(f'Video shape is {shape[:2]}')
video_kwargs = {
'shape': shape[:2],
'codec': 'h264',
'fps': config.render_video_fps,
'crf': config.render_video_crf,
}
for k in ['color', 'normals', 'acc', 'distance_mean', 'distance_median']:
video_file = os.path.join(base_dir, f'{video_prefix}_{k}.mp4')
input_format = 'gray' if k == 'acc' else 'rgb'
file_ext = 'png' if k in ['color', 'normals'] else 'tiff'
idx = 0
file0 = os.path.join(out_dir, f'{k}_{idx_to_str(0)}.{file_ext}')
if not utils.file_exists(file0):
print(f'Images missing for tag {k}')
continue
print(f'Making video {video_file}...')
with media.VideoWriter(
video_file, **video_kwargs, input_format=input_format) as writer:
for idx in range(num_frames):
img_file = os.path.join(
out_dir, f'{k}_{idx_to_str(idx)}.{file_ext}')
if not utils.file_exists(img_file):
ValueError(f'Image file {img_file} does not exist.')
img = utils.load_img(img_file)
if k in ['color', 'normals']:
img = img / 255.
elif k.startswith('distance'):
img = config.render_dist_curve_fn(img)
img = np.clip((img - np.minimum(lo, hi)) /
np.abs(hi - lo), 0, 1)
img = cm.get_cmap('turbo')(img)[..., :3]
frame = (np.clip(np.nan_to_num(img), 0., 1.)
* 255.).astype(np.uint8)
writer.add_image(frame)
idx += 1
def main(unused_argv):
config = configs.load_config(save_config=False)
# Setup device.
if torch.cuda.is_available():
device = torch.device('cuda')
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
device = torch.device('cpu')
torch.set_default_tensor_type('torch.FloatTensor')
# Create test dataset.
dataset = datasets.load_dataset('test', config.data_dir, config)
# Set random number generator seeds.
torch.manual_seed(20221019)
np.random.seed(20221019)
# Create model.
setup = train_utils.setup_model(config, dataset=dataset)
model, _, _, render_eval_fn, _ = setup
state = dict(step=0, model=model.state_dict())
# Load states from checkpoint.
if utils.isdir(config.checkpoint_dir):
files = sorted([f for f in os.listdir(config.checkpoint_dir)
if f.startswith('checkpoint')],
key=lambda x: int(x.split('_')[-1]))
# if there are checkpoints in the dir, load the latest checkpoint
if files:
checkpoint_name = files[-1]
state = torch.load(os.path.join(
config.checkpoint_dir, checkpoint_name))
model.load_state_dict(state['model'])
model.eval()
model.to(device)
else:
utils.makedirs(config.checkpoint_dir)
step = int(state['step'])
print(f'Rendering checkpoint at step {step}.')
out_name = 'path_renders' if config.render_path else 'test_preds'
out_name = f'{out_name}_step_{step}'
base_dir = config.render_dir
if base_dir is None:
base_dir = os.path.join(config.checkpoint_dir, 'render')
out_dir = os.path.join(base_dir, out_name)
if not utils.isdir(out_dir):
utils.makedirs(out_dir)
def path_fn(x):
return os.path.join(out_dir, x)
# Ensure sufficient zero-padding of image indices in output filenames.
zpad = max(3, len(str(dataset.size - 1)))
def idx_to_str(idx):
return str(idx).zfill(zpad)
if config.render_save_async:
async_executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
async_futures = []
def save_fn(fn, *args, **kwargs):
async_futures.append(async_executor.submit(fn, *args, **kwargs))
else:
def save_fn(fn, *args, **kwargs):
fn(*args, **kwargs)
for idx in range(dataset.size):
if idx % config.render_num_jobs != config.render_job_id:
continue
# If current image and next image both already exist, skip ahead.
idx_str = idx_to_str(idx)
curr_file = path_fn(f'color_{idx_str}.png')
next_idx_str = idx_to_str(idx + config.render_num_jobs)
next_file = path_fn(f'color_{next_idx_str}.png')
if utils.file_exists(curr_file) and utils.file_exists(next_file):
print(f'Image {idx}/{dataset.size} already exists, skipping')
continue
print(f'Evaluating image {idx+1}/{dataset.size}')
eval_start_time = time.time()
batch = dataset.generate_ray_batch(idx)
train_frac = 1.
with torch.no_grad():
rendering = models.render_image(
functools.partial(render_eval_fn, train_frac),
batch.rays, config)
print(f'Rendered in {(time.time() - eval_start_time):0.3f}s')
save_fn(
utils.save_img_u8, rendering['rgb'], path_fn(f'color_{idx_str}.png'))
if 'normals' in rendering:
save_fn(
utils.save_img_u8, rendering['normals'] / 2. + 0.5,
path_fn(f'normals_{idx_str}.png'))
save_fn(
utils.save_img_f32, rendering['distance_mean'],
path_fn(f'distance_mean_{idx_str}.tiff'))
save_fn(
utils.save_img_f32, rendering['distance_median'],
path_fn(f'distance_median_{idx_str}.tiff'))
save_fn(
utils.save_img_f32, rendering['acc'], path_fn(f'acc_{idx_str}.tiff'))
save_fn(
utils.save_img_u8, rendering['roughness'], path_fn(
f'rho_{idx_str}.png'),
mask=rendering['acc'])
num_files = len(glob.glob(path_fn('acc_*.tiff')))
if num_files == dataset.size:
print(
f'All files found, creating videos (job {config.render_job_id}).')
create_videos(config, base_dir, out_dir, out_name, dataset.size)
if __name__ == '__main__':
with gin.config_scope('eval'): # Use the same scope as eval.py
app.run(main)