-
Notifications
You must be signed in to change notification settings - Fork 2
/
predict.py
607 lines (434 loc) · 19.5 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# -*- coding: utf-8 -*-
FN = 'predict'
# if your GPU is busy you can use CPU for predictions
import os
os.environ['KERAS_BACKEND'] = 'theano'
os.environ['THEANO_FLAGS'] = 'device=cpu,floatX=float32,exception_verbosity=high'
# In[3]:
import keras
keras.__version__
# Generate headlines using the "simple" model from http://arxiv.org/pdf/1512.01712v1.pdf
# Use indexing of tokens from [vocabulary-embedding](./vocabulary-embedding.ipynb) this does not clip the indexes of the words to `vocab_size`.
#
# Use the index of outside words to replace them with several `oov` words (`oov` , `oov0`, `oov`...) that appear in the same description and headline. This will allow headline generator to replace the oov with the same word in the description
# In[4]:
FN0 = 'vocabulary-embedding50k-telam'
# we will generate predictions using the model generated in this notebook
# In[5]:
FN1 = 'train50-telam'
# input data (`X`) is made from `maxlend` description words followed by `eos`
# followed by headline words followed by `eos`
# if description is shorter than `maxlend` it will be left padded with `empty`
# if entire data is longer than `maxlen` it will be clipped and if it is shorter it will be padded.
#
# labels (`Y`) are the headline words followed by `eos` and clipped or padded to `maxlenh`
#
# In other words the input is made from a `maxlend` half in which the description is padded from the left
# and a `maxlenh` half in which `eos` is followed by a headline followed by another `eos` if there is enough space.
#
# The labels match only the second half and
# the first label matches the `eos` at the start of the second half (following the description in the first half)
# the model parameters should be identical with what used in training but notice that `maxlend` is flexible
# In[6]:
maxlend=60 # 0 - if we dont want to use description at all
maxlenh=25 # probar poner en cero y no usar header
maxlen = maxlend + maxlenh
rnn_size = 512
rnn_layers = 3 # match FN1
batch_norm=False
# the out of the first `activation_rnn_size` nodes from the top layer will be used for activation and the rest will be used to select predicted word
activation_rnn_size = 40 if maxlend else 0
# training parameters
seed=42
p_W, p_U, p_dense, p_emb, weight_decay = 0, 0, 0, 0, 0
optimizer = 'adam'
batch_size=128
# # read word embedding
import cPickle as pickle
with open('data-es/%s.pkl'%FN0, 'rb') as fp:
embedding, idx2word, word2idx, glove_idx2idx = pickle.load(fp)
vocab_size, embedding_size = embedding.shape
nb_unknown_words = 10
print 'dimension of embedding space for words',embedding_size
print 'vocabulary size', vocab_size, 'the last %d words can be used as place holders for unknown/oov words'%nb_unknown_words
print 'total number of different words',len(idx2word), len(word2idx)
print 'number of words outside vocabulary which we can substitue using glove similarity', len(glove_idx2idx)
print 'number of words that will be regarded as unknonw(unk)/out-of-vocabulary(oov)',len(idx2word)-vocab_size-len(glove_idx2idx)
for i in range(nb_unknown_words):
idx2word[vocab_size-1-i] = '<%d>'%i
for i in range(vocab_size-nb_unknown_words, len(idx2word)):
idx2word[i] = idx2word[i]+'^'
empty = 0
eos = 1
idx2word[empty] = '_'
idx2word[eos] = '~'
import numpy as np
from keras.preprocessing import sequence
from keras.utils import np_utils
import random, sys
def prt(label, x):
print label+':',
for w in x:
print idx2word[w],
print
# # Model
# In[18]:
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout, RepeatVector
from keras.layers.wrappers import TimeDistributed
from keras.layers.recurrent import LSTM
from keras.layers.embeddings import Embedding
from keras.regularizers import l2
from keras.layers.core import Lambda
import keras.backend as K
# seed weight initialization
random.seed(seed)
np.random.seed(seed)
regularizer = l2(weight_decay) if weight_decay else None
# ## rnn model
# start with a stacked LSTM, which is identical to the bottom of the model used in training
rnn_model = Sequential()
rnn_model.add(Embedding(vocab_size, embedding_size,
input_length=maxlen,
W_regularizer=regularizer, dropout=p_emb, weights=[embedding], mask_zero=True,
name='embedding_1'))
for i in range(rnn_layers):
lstm = LSTM(rnn_size, return_sequences=True, # batch_norm=batch_norm,
W_regularizer=regularizer, U_regularizer=regularizer,
b_regularizer=regularizer, dropout_W=p_W, dropout_U=p_U,
name='lstm_%d'%(i+1)
)
rnn_model.add(lstm)
rnn_model.add(Dropout(p_dense, name='dropout_%d'%(i+1)))
# ### load
# use the bottom weights from the trained model, and save the top weights for later
# In[22]:
import h5py
def str_shape(x):
return 'x'.join(map(str,x.shape))
def inspect_model(model):
print model.name
for i,l in enumerate(model.layers):
print i, 'cls=%s name=%s'%(type(l).__name__, l.name)
weights = l.get_weights()
for weight in weights:
print str_shape(weight),
print
def load_weights(model, filepath):
"""Modified version of keras load_weights that loads as much as it can
if there is a mismatch between file and model. It returns the weights
of the first layer in which the mismatch has happened
"""
print 'Loading', filepath, 'to', model.name
flattened_layers = model.layers
with h5py.File(filepath, mode='r') as f:
# new file format
layer_names = [n.decode('utf8') for n in f.attrs['layer_names']]
# we batch weight value assignments in a single backend call
# which provides a speedup in TensorFlow.
weight_value_tuples = []
for name in layer_names:
print name
g = f[name]
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
if len(weight_names):
weight_values = [g[weight_name] for weight_name in weight_names]
try:
layer = model.get_layer(name=name)
except:
layer = None
if not layer:
print 'failed to find layer', name, 'in model'
print 'weights', ' '.join(str_shape(w) for w in weight_values)
print 'stopping to load all other layers'
weight_values = [np.array(w) for w in weight_values]
break
symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
weight_value_tuples += zip(symbolic_weights, weight_values)
weight_values = None
K.batch_set_value(weight_value_tuples)
return weight_values
weights = load_weights(rnn_model, 'data-es/%s.hdf5'%FN1)
[w.shape for w in weights]
# ## headline model
# A special layer that reduces the input just to its headline part (second half).
# For each word in this part it concatenate the output of the previous layer (RNN)
# with a weighted average of the outputs of the description part.
# In this only the last `rnn_size - activation_rnn_size` are used from each output.
# The first `activation_rnn_size` output is used to computer the weights for the averaging.
context_weight = K.variable(1.)
head_weight = K.variable(1.)
cross_weight = K.variable(0.)
def simple_context(X, mask, n=activation_rnn_size, maxlend=maxlend, maxlenh=maxlenh):
desc, head = X[:,:maxlend], X[:,maxlend:]
head_activations, head_words = head[:,:,:n], head[:,:,n:]
desc_activations, desc_words = desc[:,:,:n], desc[:,:,n:]
# RTFM http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.batched_tensordot
# activation for every head word and every desc word
activation_energies = K.batch_dot(head_activations, desc_activations, axes=([2],[2]))
# make sure we dont use description words that are masked out
assert mask.ndim == 2
activation_energies = K.switch(mask[:, None, :maxlend], activation_energies, -1e20)
# for every head word compute weights for every desc word
activation_energies = K.reshape(activation_energies,(-1,maxlend))
activation_weights = K.softmax(activation_energies)
activation_weights = K.reshape(activation_weights,(-1,maxlenh,maxlend))
# for every head word compute weighted average of desc words
desc_avg_word = K.batch_dot(activation_weights, desc_words, axes=([2],[1]))
return K.concatenate((context_weight*desc_avg_word, head_weight*head_words))
class SimpleContext(Lambda):
def __init__(self,**kwargs):
super(SimpleContext, self).__init__(simple_context,**kwargs)
self.supports_masking = True
def compute_mask(self, input, input_mask=None):
return input_mask[:, maxlend:]
def get_output_shape_for(self, input_shape):
nb_samples = input_shape[0]
n = 2*(rnn_size - activation_rnn_size)
return (nb_samples, maxlenh, n)
model = Sequential()
model.add(rnn_model)
if activation_rnn_size:
model.add(SimpleContext(name='simplecontext_1'))
# we are not going to fit so we dont care about loss and optimizer
model.compile(loss='categorical_crossentropy', optimizer='adam')
n = 2*(rnn_size - activation_rnn_size)
n
# perform the top dense of the trained model in numpy so we can play around with exactly how it works
# out very own softmax
def output2probs(output):
output = np.dot(output, weights[0]) + weights[1]
output -= output.max()
output = np.exp(output)
output /= output.sum()
return output
def output2probs1(output):
output0 = np.dot(output[:n//2], weights[0][:n//2,:])
output1 = np.dot(output[n//2:], weights[0][n//2:,:])
output = output0 + output1 # + output0 * output1
output += weights[1]
output -= output.max()
output = np.exp(output)
output /= output.sum()
return output
# # Test
def lpadd(x, maxlend=maxlend, eos=eos):
"""left (pre) pad a description to maxlend and then add eos.
The eos is the input to predicting the first word in the headline
"""
assert maxlend >= 0
if maxlend == 0:
return [eos]
n = len(x)
if n > maxlend:
x = x[-maxlend:]
n = maxlend
return [empty]*(maxlend-n) + x + [eos]
samples = [lpadd([3]*26)]
# pad from right (post) so the first maxlend will be description followed by headline
data = sequence.pad_sequences(samples, maxlen=maxlen, value=empty, padding='post', truncating='post')
np.all(data[:,maxlend] == eos)
data.shape,map(len, samples)
probs = model.predict(data, verbose=0, batch_size=1)
probs.shape
# # Sample generation
# variation to https://github.com/ryankiros/skip-thoughts/blob/master/decoding/search.py
def beamsearch(predict, start=[empty]*maxlend + [eos], avoid=None, avoid_score=1,
k=1, maxsample=maxlen, use_unk=True, oov=vocab_size-1, empty=empty, eos=eos, temperature=1.0):
"""return k samples (beams) and their NLL scores, each sample is a sequence of labels,
all samples starts with an `empty` label and end with `eos` or truncated to length of `maxsample`.
You need to supply `predict` which returns the label probability of each sample.
`use_unk` allow usage of `oov` (out-of-vocabulary) label in samples
"""
def sample(energy, n, temperature=temperature):
"""sample at most n different elements according to their energy"""
n = min(n,len(energy))
prb = np.exp(-np.array(energy) / temperature )
res = []
for i in xrange(n):
z = np.sum(prb)
r = np.argmax(np.random.multinomial(1, prb/z, 1))
res.append(r)
prb[r] = 0. # make sure we select each element only once
return res
dead_samples = []
dead_scores = []
live_samples = [list(start)]
live_scores = [0]
while live_samples:
# for every possible live sample calc prob for every possible label
probs = predict(live_samples, empty=empty)
assert vocab_size == probs.shape[1]
# total score for every sample is sum of -log of word prb
cand_scores = np.array(live_scores)[:,None] - np.log(probs)
cand_scores[:,empty] = 1e20
if not use_unk and oov is not None:
cand_scores[:,oov] = 1e20
if avoid:
for a in avoid:
for i, s in enumerate(live_samples):
n = len(s) - len(start)
if n < len(a):
# at this point live_sample is before the new word,
# which should be avoided, is added
cand_scores[i,a[n]] += avoid_score
live_scores = list(cand_scores.flatten())
# find the best (lowest) scores we have from all possible dead samples and
# all live samples and all possible new words added
scores = dead_scores + live_scores
ranks = sample(scores, k)
n = len(dead_scores)
dead_scores = [dead_scores[r] for r in ranks if r < n]
dead_samples = [dead_samples[r] for r in ranks if r < n]
live_scores = [live_scores[r-n] for r in ranks if r >= n]
live_samples = [live_samples[(r-n)//vocab_size]+[(r-n)%vocab_size] for r in ranks if r >= n]
# live samples that should be dead are...
# even if len(live_samples) == maxsample we dont want it dead because we want one
# last prediction out of it to reach a headline of maxlenh
def is_zombie(s):
return s[-1] == eos or len(s) > maxsample
# add zombies to the dead
dead_scores += [c for s, c in zip(live_samples, live_scores) if is_zombie(s)]
dead_samples += [s for s in live_samples if is_zombie(s)]
# remove zombies from the living
live_scores = [c for s, c in zip(live_samples, live_scores) if not is_zombie(s)]
live_samples = [s for s in live_samples if not is_zombie(s)]
return dead_samples, dead_scores
def keras_rnn_predict(samples, empty=empty, model=model, maxlen=maxlen):
"""for every sample, calculate probability for every possible label
you need to supply your RNN model and maxlen - the length of sequences it can handle
"""
sample_lengths = map(len, samples)
assert all(l > maxlend for l in sample_lengths)
assert all(l[maxlend] == eos for l in samples)
# pad from right (post) so the first maxlend will be description followed by headline
data = sequence.pad_sequences(samples, maxlen=maxlen, value=empty, padding='post', truncating='post')
probs = model.predict(data, verbose=0, batch_size=batch_size)
return np.array([output2probs(prob[sample_length-maxlend-1]) for prob, sample_length in zip(probs, sample_lengths)])
def vocab_fold(xs):
"""convert list of word indexes that may contain words outside vocab_size to words inside.
If a word is outside, try first to use glove_idx2idx to find a similar word inside.
If none exist then replace all accurancies of the same unknown word with <0>, <1>, ...
"""
xs = [x if x < vocab_size-nb_unknown_words else glove_idx2idx.get(x,x) for x in xs]
# the more popular word is <0> and so on
outside = sorted([x for x in xs if x >= vocab_size-nb_unknown_words])
# if there are more than nb_unknown_words oov words then put them all in nb_unknown_words-1
outside = dict((x,vocab_size-1-min(i, nb_unknown_words-1)) for i, x in enumerate(outside))
xs = [outside.get(x,x) for x in xs]
return xs
def vocab_unfold(desc,xs):
# assume desc is the unfolded version of the start of xs
unfold = {}
for i, unfold_idx in enumerate(desc):
fold_idx = xs[i]
if fold_idx >= vocab_size-nb_unknown_words:
unfold[fold_idx] = unfold_idx
return [unfold.get(x,x) for x in xs]
import sys
import Levenshtein
def gensamples(X=None, X_test=None, Y_test=None, avoid=None, avoid_score=1, skips=2, k=10, batch_size=batch_size, short=True, temperature=1., use_unk=True):
x =[]
for w in X.split():
try:
x.append(word2idx[w.rstrip('^')] )
except KeyError:
print('KeyError: ' + w.rstrip('^'))
if avoid:
# avoid is a list of avoids. Each avoid is a string or list of word indeicies
if isinstance(avoid,str) or isinstance(avoid[0], int):
avoid = [avoid]
avoid = [a.split() if isinstance(a,str) else a for a in avoid]
avoid = [vocab_fold([w if isinstance(w,int) else word2idx[w] for w in a])
for a in avoid]
print 'HEADS:'
samples = []
if maxlend == 0:
skips = [0]
else:
skips = range(min(maxlend,len(x)), max(maxlend,len(x)), abs(maxlend - len(x)) // skips + 1)
for s in skips:
start = lpadd(x[:s])
fold_start = vocab_fold(start)
sample, score = beamsearch(predict=keras_rnn_predict, start=fold_start, avoid=avoid, avoid_score=avoid_score,
k=k, temperature=temperature, use_unk=use_unk)
assert all(s[maxlend] == eos for s in sample)
samples += [(s,start,scr) for s,scr in zip(sample,score)]
samples.sort(key=lambda x: x[-1])
codes = []
for sample, start, score in samples:
code = ''
words = []
sample = vocab_unfold(start, sample)[len(start):]
for w in sample:
if w == eos:
break
words.append(idx2word[w])
code += chr(w//(256*256)) + chr((w//256)%256) + chr(w%256)
if short:
distance = min([100] + [-Levenshtein.jaro(code,c) for c in codes])
if distance > -0.6:
print score, ' '.join(words)
# print '%s (%.2f) %f'%(' '.join(words), score, distance)
else:
print score, ' '.join(words)
codes.append(code)
return samples
# seed = 8
# random.seed(seed)
# np.random.seed(seed)
import HTMLParser
def polish_sentence( sentence ):
p = HTMLParser.HTMLParser()
sentence = p.unescape(sentence)
sentence = re.sub(u'\n','', sentence)
sentence = re.sub(u'<[^>]*>nt','', sentence)
sentence = re.sub(u'<[^>]*>','', sentence)
sentence = re.sub(u'\[[a-z\_]*embed:.*\]','', sentence)
sentence = re.sub(u'\[video:.*\]','', sentence)
sentence = re.sub(u'[\.\[\]\?\,\(\)\!\"\'\\/\:\-]',' ', sentence)
sentence = re.sub(u'[ ]+',' ', sentence)
sentence = re.sub(u'%[0-9][a-zA-Z-0-9]', ' ',sentence)
return sentence
import re
def refine_sentence( sentence ):
spcl_chr = re.escape('[]?.,()!"\'\\/:')
regex = '[' + spcl_chr + ']'
return re.sub(regex," ", sentence)
X = u'Boca Juniors le ganó a San Lorenzo por 3 a 2 y si mañana vuelve a ganar se consagrará campeón de la Liga Argentina femenina de clubes de vóleibol 2018.'
X = polish_sentence(X)
samples = gensamples(X=X, skips=2, batch_size=batch_size, k=10, temperature=1.)
str = ' '.join(idx2word[w] for w in samples[0][1])
print "RESULT:" + str
# samples = gensamples(X, skips=2, batch_size=batch_size, k=10, temperature=1.)
# str = ' '.join(idx2word[w] for w in samples[0][1])
# print "RESULT:" + str
#
# gensamples(X, skips=2, batch_size=batch_size, k=10, temperature=1, use_unk=True, short=False);
# str = ' '.join(idx2word[w] for w in samples[0][1])
# print "RESULT:" + str
#
# samples = gensamples(X, skips=2, batch_size=batch_size, k=10, temperature=1)
# str = ' '.join(idx2word[w] for w in samples[0][1])
# print "RESULT:" + str
#
#
#
#
#
# samples = gensamples(X, avoid=avoid, avoid_score=.1, skips=2, batch_size=batch_size, k=10, temperature=1.)
#
#
#
#
# avoid = samples[0][0][len(samples[0][1]):]
#
#
#
# samples = gensamples(X, avoid=avoid, avoid_score=.1, skips=2, batch_size=batch_size, k=10, temperature=1.)
#
#
#
# len(samples)
#
#