-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
695 lines (444 loc) · 21.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# -*- coding: utf-8 -*-
FN = 'train50k-telam'
# you should use GPU but if it is busy then you always can fall back to your CPU
import os
# os.environ['KERAS_BACKEND'] = 'theano'
# os.environ['THEANO_FLAGS'] = 'device=cpu,floatX=float32,exception_verbosity=high'
import keras
keras.__version__
# Use indexing of tokens from [vocabulary-embedding](./vocabulary-embedding.ipynb) this does not clip the indexes of the words to `vocab_size`.
#
# Use the index of outside words to replace them with several `oov` words (`oov` , `oov0`, `oov1`, ...) that appear in the same description and headline. This will allow headline generator to replace the oov with the same word in the description
FN0 = 'vocabulary-embedding50k-telam'
# implement the "simple" model from http://arxiv.org/pdf/1512.01712v1.pdf
# you can start training from a pre-existing model. This allows you to run this notebooks many times, each time using different parameters and passing the end result of one run to be the input of the next.
#
# I've started with `maxlend=0` (see below) in which the description was ignored. I then moved to start with a high `LR` and the manually lowering it. I also started with `nflips=0` in which the original headlines is used as-is and slowely moved to `12` in which half the input headline was fliped with the predictions made by the model (the paper used fixed 10%)
FN1 = 'train50k-telam'
# input data (`X`) is made from `maxlend` description words followed by `eos`
# followed by headline words followed by `eos`
# if description is shorter than `maxlend` it will be left padded with `empty`
# if entire data is longer than `maxlen` it will be clipped and if it is shorter it will be right padded with empty.
#
# labels (`Y`) are the headline words followed by `eos` and clipped or padded to `maxlenh`
#
# In other words the input is made from a `maxlend` half in which the description is padded from the left
# and a `maxlenh` half in which `eos` is followed by a headline followed by another `eos` if there is enough space.
#
# The labels match only the second half and
# the first label matches the `eos` at the start of the second half (following the description in the first half)
maxlend=60 # 0 - if we dont want to use description at all
maxlenh=25
maxlen = maxlend + maxlenh
rnn_size = 512 # must be same as 160330-word-gen
rnn_layers = 3 # match FN1
batch_norm=False
# the out of the first `activation_rnn_size` nodes from the top LSTM layer will be used for activation and the rest will be used to select predicted word
activation_rnn_size = 40 if maxlend else 0
# training parameters
seed=42
p_W, p_U, p_dense, p_emb, weight_decay = 0, 0, 0, 0, 0
optimizer = 'adam'
LR = 1e-4
batch_size=128
nflips=10
nb_train_samples = 30000
nb_val_samples = 3000
# # read word embedding
import cPickle as pickle
with open('data-es/%s.pkl'%FN0, 'rb') as fp:
embedding, idx2word, word2idx, glove_idx2idx = pickle.load(fp)
vocab_size, embedding_size = embedding.shape
with open('data-es/%s.data.pkl'%FN0, 'rb') as fp:
X, Y = pickle.load(fp)
nb_unknown_words = 10
print 'number of examples',len(X),len(Y)
print 'dimension of embedding space for words',embedding_size
print 'vocabulary size', vocab_size, 'the last %d words can be used as place holders for unknown/oov words'%nb_unknown_words
print 'total number of different words',len(idx2word), len(word2idx)
print 'number of words outside vocabulary which we can substitue using glove similarity', len(glove_idx2idx)
print 'number of words that will be regarded as unknonw(unk)/out-of-vocabulary(oov)',len(idx2word)-vocab_size-len(glove_idx2idx)
for i in range(nb_unknown_words):
idx2word[vocab_size-1-i] = '<%d>'%i
# when printing mark words outside vocabulary with `^` at their end
oov0 = vocab_size-nb_unknown_words
for i in range(oov0, len(idx2word)):
idx2word[i] = idx2word[i]+'^'
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=nb_val_samples, random_state=seed)
len(X_train), len(Y_train), len(X_test), len(Y_test)
del X
del Y
empty = 0
eos = 1
idx2word[empty] = '_'
idx2word[eos] = '~'
import numpy as np
from keras.preprocessing import sequence
from keras.utils import np_utils
import random, sys
def prt(label, x):
print label+':',
for w in x:
print idx2word[w],
print
i = 334
prt('H',Y_train[i])
prt('D',X_train[i])
i = 334
prt('H',Y_test[i])
prt('D',X_test[i])
# # Model
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout, RepeatVector
from keras.layers.wrappers import TimeDistributed
from keras.layers.recurrent import LSTM
from keras.layers.embeddings import Embedding
from keras.regularizers import l2
# seed weight initialization
random.seed(seed)
np.random.seed(seed)
regularizer = l2(weight_decay) if weight_decay else None
# start with a standard stacked LSTM
model = Sequential()
model.add(Embedding(vocab_size, embedding_size,
input_length=maxlen,
W_regularizer=regularizer, dropout=p_emb, weights=[embedding], mask_zero=True,
name='embedding_1'))
for i in range(rnn_layers):
lstm = LSTM(rnn_size, return_sequences=True, # batch_norm=batch_norm,
W_regularizer=regularizer, U_regularizer=regularizer,
b_regularizer=regularizer, dropout_W=p_W, dropout_U=p_U,
name='lstm_%d'%(i+1)
)
model.add(lstm)
model.add(Dropout(p_dense,name='dropout_%d'%(i+1)))
# A special layer that reduces the input just to its headline part (second half).
# For each word in this part it concatenate the output of the previous layer (RNN)
# with a weighted average of the outputs of the description part.
# In this only the last `rnn_size - activation_rnn_size` are used from each output.
# The first `activation_rnn_size` output is used to computer the weights for the averaging.
from keras.layers.core import Lambda
import keras.backend as K
def simple_context(X, mask, n=activation_rnn_size, maxlend=maxlend, maxlenh=maxlenh):
desc, head = X[:,:maxlend,:], X[:,maxlend:,:]
head_activations, head_words = head[:,:,:n], head[:,:,n:]
desc_activations, desc_words = desc[:,:,:n], desc[:,:,n:]
# RTFM http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.batched_tensordot
# activation for every head word and every desc word
activation_energies = K.batch_dot(head_activations, desc_activations, axes=(2,2))
# make sure we dont use description words that are masked out
if mask !=None:
activation_energies = activation_energies + -1e20*K.expand_dims(1.-K.cast(mask[:, :maxlend],'float32'),1)
# for every head word compute weights for every desc word
activation_energies = K.reshape(activation_energies,(-1,maxlend))
activation_weights = K.softmax(activation_energies)
activation_weights = K.reshape(activation_weights,(-1,maxlenh,maxlend))
# for every head word compute weighted average of desc words
desc_avg_word = K.batch_dot(activation_weights, desc_words, axes=(2,1))
return K.concatenate((desc_avg_word, head_words))
class SimpleContext(Lambda):
def __init__(self,**kwargs):
super(SimpleContext, self).__init__(simple_context,**kwargs)
self.supports_masking = True
def compute_mask(self, input, input_mask=None):
return input_mask[:, maxlend:]
def get_output_shape_for(self, input_shape):
nb_samples = input_shape[0]
n = 2*(rnn_size - activation_rnn_size)
return (nb_samples, maxlenh, n)
if activation_rnn_size:
model.add(SimpleContext(name='simplecontext_1'))
model.add(TimeDistributed(Dense(vocab_size,
W_regularizer=regularizer, b_regularizer=regularizer,
name = 'timedistributed_1')))
model.add(Activation('softmax', name='activation_1'))
from keras.optimizers import Adam, RMSprop # usually I prefer Adam but article used rmsprop
# opt = Adam(lr=LR) # keep calm and reduce learning rate
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
K.set_value(model.optimizer.lr,np.float32(LR))
def str_shape(x):
return 'x'.join(map(str,x.shape))
def inspect_model(model):
for i,l in enumerate(model.layers):
print i, 'cls=%s name=%s'%(type(l).__name__, l.name)
weights = l.get_weights()
for weight in weights:
print str_shape(weight),
print
inspect_model(model)
# # Load
if FN1 and os.path.exists('data-es/%s.hdf5'%FN1):
model.load_weights('data-es/%s.hdf5'%FN1)
# # Test
def lpadd(x, maxlend=maxlend, eos=eos):
"""left (pre) pad a description to maxlend and then add eos.
The eos is the input to predicting the first word in the headline
"""
assert maxlend >= 0
if maxlend == 0:
return [eos]
n = len(x)
if n > maxlend:
x = x[-maxlend:]
n = maxlend
return [empty]*(maxlend-n) + x + [eos]
samples = [lpadd([3]*26)]
# pad from right (post) so the first maxlend will be description followed by headline
data = sequence.pad_sequences(samples, maxlen=maxlen, value=empty, padding='post', truncating='post')
np.all(data[:,maxlend] == eos)
data.shape,map(len, samples)
probs = model.predict(data, verbose=0, batch_size=1)
probs.shape
# # Sample generation
# this section is only used to generate examples. you can skip it if you just want to understand how the training works
# variation to https://github.com/ryankiros/skip-thoughts/blob/master/decoding/search.py
def beamsearch(predict, start=[empty]*maxlend + [eos],
k=1, maxsample=maxlen, use_unk=True, empty=empty, eos=eos, temperature=1.0):
"""return k samples (beams) and their NLL scores, each sample is a sequence of labels,
all samples starts with an `empty` label and end with `eos` or truncated to length of `maxsample`.
You need to supply `predict` which returns the label probability of each sample.
`use_unk` allow usage of `oov` (out-of-vocabulary) label in samples
"""
def sample(energy, n, temperature=temperature):
"""sample at most n elements according to their energy"""
n = min(n,len(energy))
prb = np.exp(-np.array(energy) / temperature )
res = []
for i in xrange(n):
z = np.sum(prb)
r = np.argmax(np.random.multinomial(1, prb/z, 1))
res.append(r)
prb[r] = 0. # make sure we select each element only once
return res
dead_k = 0 # samples that reached eos
dead_samples = []
dead_scores = []
live_k = 1 # samples that did not yet reached eos
live_samples = [list(start)]
live_scores = [0]
while live_k:
# for every possible live sample calc prob for every possible label
probs = predict(live_samples, empty=empty)
# total score for every sample is sum of -log of word prb
cand_scores = np.array(live_scores)[:,None] - np.log(probs)
cand_scores[:,empty] = 1e20
if not use_unk:
for i in range(nb_unknown_words):
cand_scores[:,vocab_size - 1 - i] = 1e20
live_scores = list(cand_scores.flatten())
# find the best (lowest) scores we have from all possible dead samples and
# all live samples and all possible new words added
scores = dead_scores + live_scores
ranks = sample(scores, k)
n = len(dead_scores)
ranks_dead = [r for r in ranks if r < n]
ranks_live = [r - n for r in ranks if r >= n]
dead_scores = [dead_scores[r] for r in ranks_dead]
dead_samples = [dead_samples[r] for r in ranks_dead]
live_scores = [live_scores[r] for r in ranks_live]
# append the new words to their appropriate live sample
voc_size = probs.shape[1]
live_samples = [live_samples[r//voc_size]+[r%voc_size] for r in ranks_live]
# live samples that should be dead are...
# even if len(live_samples) == maxsample we dont want it dead because we want one
# last prediction out of it to reach a headline of maxlenh
zombie = [s[-1] == eos or len(s) > maxsample for s in live_samples]
# add zombies to the dead
dead_samples += [s for s,z in zip(live_samples,zombie) if z]
dead_scores += [s for s,z in zip(live_scores,zombie) if z]
dead_k = len(dead_samples)
# remove zombies from the living
live_samples = [s for s,z in zip(live_samples,zombie) if not z]
live_scores = [s for s,z in zip(live_scores,zombie) if not z]
live_k = len(live_samples)
return dead_samples + live_samples, dead_scores + live_scores
# !pip install python-Levenshtein
def keras_rnn_predict(samples, empty=empty, model=model, maxlen=maxlen):
"""for every sample, calculate probability for every possible label
you need to supply your RNN model and maxlen - the length of sequences it can handle
"""
sample_lengths = map(len, samples)
assert all(l > maxlend for l in sample_lengths)
assert all(l[maxlend] == eos for l in samples)
# pad from right (post) so the first maxlend will be description followed by headline
data = sequence.pad_sequences(samples, maxlen=maxlen, value=empty, padding='post', truncating='post')
probs = model.predict(data, verbose=0, batch_size=batch_size)
return np.array([prob[sample_length-maxlend-1] for prob, sample_length in zip(probs, sample_lengths)])
def vocab_fold(xs):
"""convert list of word indexes that may contain words outside vocab_size to words inside.
If a word is outside, try first to use glove_idx2idx to find a similar word inside.
If none exist then replace all accurancies of the same unknown word with <0>, <1>, ...
"""
xs = [x if x < oov0 else glove_idx2idx.get(x,x) for x in xs]
# the more popular word is <0> and so on
outside = sorted([x for x in xs if x >= oov0])
# if there are more than nb_unknown_words oov words then put them all in nb_unknown_words-1
outside = dict((x,vocab_size-1-min(i, nb_unknown_words-1)) for i, x in enumerate(outside))
xs = [outside.get(x,x) for x in xs]
return xs
def vocab_unfold(desc,xs):
# assume desc is the unfolded version of the start of xs
unfold = {}
for i, unfold_idx in enumerate(desc):
fold_idx = xs[i]
if fold_idx >= oov0:
unfold[fold_idx] = unfold_idx
return [unfold.get(x,x) for x in xs]
import sys
import Levenshtein
def gensamples(skips=2, k=10, batch_size=batch_size, short=True, temperature=1., use_unk=True):
i = random.randint(0,len(X_test)-1)
print 'HEAD:',' '.join(idx2word[w] for w in Y_test[i][:maxlenh])
print 'DESC:',' '.join(idx2word[w] for w in X_test[i][:maxlend])
sys.stdout.flush()
print 'HEADS:'
x = X_test[i]
samples = []
if maxlend == 0:
skips = [0]
else:
skips = range(min(maxlend,len(x)), max(maxlend,len(x)), abs(maxlend - len(x)) // skips + 1)
for s in skips:
start = lpadd(x[:s])
fold_start = vocab_fold(start)
sample, score = beamsearch(predict=keras_rnn_predict, start=fold_start, k=k, temperature=temperature, use_unk=use_unk)
assert all(s[maxlend] == eos for s in sample)
samples += [(s,start,scr) for s,scr in zip(sample,score)]
samples.sort(key=lambda x: x[-1])
codes = []
for sample, start, score in samples:
code = ''
words = []
sample = vocab_unfold(start, sample)[len(start):]
for w in sample:
if w == eos:
break
words.append(idx2word[w])
code += chr(w//(256*256)) + chr((w//256)%256) + chr(w%256)
if short:
distance = min([100] + [-Levenshtein.jaro(code,c) for c in codes])
if distance > -0.6:
print score, ' '.join(words)
# print '%s (%.2f) %f'%(' '.join(words), score, distance)
else:
print score, ' '.join(words)
codes.append(code)
gensamples(skips=2, batch_size=batch_size, k=10, temperature=1.)
# # Data generator
# Data generator generates batches of inputs and outputs/labels for training. The inputs are each made from two parts. The first maxlend words are the original description, followed by `eos` followed by the headline which we want to predict, except for the last word in the headline which is always `eos` and then `empty` padding until `maxlen` words.
#
# For each, input, the output is the headline words (without the start `eos` but with the ending `eos`) padded with `empty` words up to `maxlenh` words. The output is also expanded to be y-hot encoding of each word.
# To be more realistic, the second part of the input should be the result of generation and not the original headline.
# Instead we will flip just `nflips` words to be from the generator, but even this is too hard and instead
# implement flipping in a naive way (which consumes less time.) Using the full input (description + eos + headline) generate predictions for outputs. For nflips random words from the output, replace the original word with the word with highest probability from the prediction.
def flip_headline(x, nflips=None, model=None, debug=False):
"""given a vectorized input (after `pad_sequences`) flip some of the words in the second half (headline)
with words predicted by the model
"""
if nflips is None or model is None or nflips <= 0:
return x
batch_size = len(x)
assert np.all(x[:,maxlend] == eos)
probs = model.predict(x, verbose=0, batch_size=batch_size)
x_out = x.copy()
for b in range(batch_size):
# pick locations we want to flip
# 0...maxlend-1 are descriptions and should be fixed
# maxlend is eos and should be fixed
flips = sorted(random.sample(xrange(maxlend+1,maxlen), nflips))
if debug and b < debug:
print b,
for input_idx in flips:
if x[b,input_idx] == empty or x[b,input_idx] == eos:
continue
# convert from input location to label location
# the output at maxlend (when input is eos) is feed as input at maxlend+1
label_idx = input_idx - (maxlend+1)
prob = probs[b, label_idx]
w = prob.argmax()
if w == empty: # replace accidental empty with oov
w = oov0
if debug and b < debug:
print '%s => %s'%(idx2word[x_out[b,input_idx]],idx2word[w]),
x_out[b,input_idx] = w
if debug and b < debug:
print
return x_out
def conv_seq_labels(xds, xhs, nflips=None, model=None, debug=False):
"""description and hedlines are converted to padded input vectors. headlines are one-hot to label"""
batch_size = len(xhs)
assert len(xds) == batch_size
x = [vocab_fold(lpadd(xd)+xh) for xd,xh in zip(xds,xhs)] # the input does not have 2nd eos
x = sequence.pad_sequences(x, maxlen=maxlen, value=empty, padding='post', truncating='post')
x = flip_headline(x, nflips=nflips, model=model, debug=debug)
y = np.zeros((batch_size, maxlenh, vocab_size))
for i, xh in enumerate(xhs):
xh = vocab_fold(xh) + [eos] + [empty]*maxlenh # output does have a eos at end
xh = xh[:maxlenh]
y[i,:,:] = np_utils.to_categorical(xh, vocab_size)
return x, y
def gen(Xd, Xh, batch_size=batch_size, nb_batches=None, nflips=None, model=None, debug=False, seed=seed):
"""yield batches. for training use nb_batches=None
for validation generate deterministic results repeating every nb_batches
while training it is good idea to flip once in a while the values of the headlines from the
value taken from Xh to value generated by the model.
"""
c = nb_batches if nb_batches else 0
while True:
xds = []
xhs = []
if nb_batches and c >= nb_batches:
c = 0
new_seed = random.randint(0, sys.maxint)
random.seed(c+123456789+seed)
for b in range(batch_size):
t = random.randint(0,len(Xd)-1)
xd = Xd[t]
s = random.randint(min(maxlend,len(xd)), max(maxlend,len(xd)))
xds.append(xd[:s])
xh = Xh[t]
s = random.randint(min(maxlenh,len(xh)), max(maxlenh,len(xh)))
xhs.append(xh[:s])
# undo the seeding before we yield inorder not to affect the caller
c+= 1
random.seed(new_seed)
yield conv_seq_labels(xds, xhs, nflips=nflips, model=model, debug=debug)
r = next(gen(X_train, Y_train, batch_size=batch_size))
r[0].shape, r[1].shape, len(r)
def test_gen(gen, n=5):
Xtr,Ytr = next(gen)
for i in range(n):
assert Xtr[i,maxlend] == eos
x = Xtr[i,:maxlend]
y = Xtr[i,maxlend:]
yy = Ytr[i,:]
yy = np.where(yy)[1]
prt('L',yy)
prt('H',y)
if maxlend:
prt('D',x)
test_gen(gen(X_train, Y_train, batch_size=batch_size))
# test fliping
test_gen(gen(X_train, Y_train, nflips=6, model=model, debug=False, batch_size=batch_size))
valgen = gen(X_test, Y_test,nb_batches=3, batch_size=batch_size)
# check that valgen repeats itself after nb_batches
for i in range(4):
test_gen(valgen, n=1)
# # Train
history = {}
traingen = gen(X_train, Y_train, batch_size=batch_size, nflips=nflips, model=model)
valgen = gen(X_test, Y_test, nb_batches=nb_val_samples//batch_size, batch_size=batch_size)
r = next(traingen)
r[0].shape, r[1].shape, len(r)
for iteration in range(9):
print 'Iteration', iteration
h = model.fit_generator(traingen, samples_per_epoch=nb_train_samples,
nb_epoch=1, validation_data=valgen, nb_val_samples=nb_val_samples
)
for k,v in h.history.iteritems():
history[k] = history.get(k,[]) + v
with open('data-es/%s.history.pkl'%FN,'wb') as fp:
pickle.dump(history,fp,-1)
model.save_weights('data-es/%s.hdf5'%FN, overwrite=True)
gensamples(batch_size=batch_size)