-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides6-cutout.html
117 lines (109 loc) · 4.51 KB
/
slides6-cutout.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
<div class="slide build-focus-visible" group="theme2">
<h1>Recap</h1>
<div>Scalar product spaces.</div>
<ul>
<li step="1">Vector space equipped with scalar product.
<li step="2">Why not always deal in orthonormal bases? - In QM we will.
<li step="3,5">Covector space basis can be defined as
$$\xvec{e}^i(\xvec{e}_j) = \delta^i_j$$ <span step="5">$N$
equations per basis vector.</span>
<li step="4,5">Scalar product gives mapping of vectors and covectors
$$\xvec{f}(\xvec{x}) := \xvec{f} \cdot \xvec{x}$$ <span step="5">One
equation per vector.</span>
</ul>
</div>
<div class="slide build-focus-visible" group="theme2">
<h1>Dirac Notation</h1>
<div>Used in quantum mechanics.</div>
<ul>
<li step="0">Vector space in QM is functions that are solutions to the
Schrödinger equation.
<li step="1">Complex valued time dependent or time independent
functions of 3d space (aka, fields) form a vector space. (Check
axioms.)
<li step="2">Have a natural scalar product. (Check axioms.)
<li step="3">Schrödinger operator is linear, so solutions of the
equation for one eigenvalue (next session) form a subspace.
<li step="4">In QM, every vector worth mentioning is the eigenvector
of some operator.
<li step="5">Idea in Dirac notation is to always label vectors with
eigenvalues of some operator, and use those as "coordinates".
</ul>
</div>
<div class="slide build-focus-visible continued" group="theme2">
<h1>Dirac Notation</h1>
<table>
<tr>
<th>
<th style="text-align:left">Dirac notation
<th style="text-align:left">Einstein notation
</tr>
<tr step="1">
<td>Any vector
<td>$\ket{\psi} \in V$
<td>$\xvec{x} \in V$
</tr>
<tr step="2">
<td>Vector basis
<td>$\sum_i \psi_i \ket{i}$
<td>$x^i \xvec{e}_i$
</tr>
<tr step="3">
<td>Vector coordninates
<td>$\psi_i = \braket{i|\psi}$
<td>$x^i \xvec{e}_i$
</tr>
</table>
</div>
<div class="slide build-focus-visible continued" group="theme2">
<h1>Dirac Notation</h1>
<table>
<tr>
<th>
<th step="1,2,3" style="text-align:left">Dirac notation
<th step="1,2" style="text-align:left">Einstein notation
</tr>
<tr>
<td step="1,3">Covector applied to vector
<td step="1,3">$\braket{\phi|\psi} = \sum_{ij} \phi_i^\ast \psi_j \braket{i|j}
= \sum_i \phi_i^\ast \psi_i$
<td step="1">$\xvec{x} (\xvec{y}) = x_i y^j \xvec{e}^i(\xvec{e}_j)$
</tr>
<tr>
<td step="2,3">Scalar product
<td step="2,3">$\braket{\phi|\psi} = \sum_{ij} \phi_i^\ast \psi_j \braket{i|j}
= \sum_i \phi_i^\ast \psi_i$
<td step="2">$\xvec{x} \cdot \xvec{y} = x^i y^j \xvec{e}_i \cdot \xvec{e}_j = x^i y^j g_{ij}$
</tr>
</table>
</div>
<div class="slide build-focus-visible continued" group="theme2">
<h1>Dirac Notation</h1>
<table>
<tr>
<th>
<th style="text-align:left">Dirac notation
<th style="text-align:left">Einstein notation
</tr>
<tr>
<td step="1">Operators
<td step="1">$\ket{\psi}^\prime = A \ket{\psi}$
<td step="1">$\xvec{x}^\prime = A \xvec{x}$
</tr>
</table>
</div>
<div class="slide build-focus-visible continued" group="theme2">
<h1>Dirac Notation</h1>
<div>Operator coordinates</div>
<ul>
<li step="1">$\ket{\psi}^\prime = A \ket{\psi}$
<li step="2">$\psi^\prime_i = \sum_{j} A_{ij} \psi_j$
<li step="3">$A_{ij} = \braket{i|A|j}$
<li step="4">How can we see this:
<li step="5">$\ket{\psi}^\prime = A \ket{\psi}$
<li step="6">$\ket{\psi}^\prime = \sum_j A \ket{j} \braket{j|\psi}$
<li step="7">$\braket{i|\psi}^\prime = \bra{i} \sum_j A \ket{j} \braket{j|\psi}$
<li step="8">$\braket{i|\psi}^\prime = \sum_j \bra{i} A \ket{j} \braket{j|\psi}$
<li step="9">$\psi^\prime_j = \sum_{i} A_{ij} \psi_i$
</ul>
</div>