Skip to content

Latest commit

 

History

History
56 lines (48 loc) · 2.61 KB

data_structures.md

File metadata and controls

56 lines (48 loc) · 2.61 KB

Data structure description

Variables

variables=list() #The element type is: dict:variable
variable
{
User-provided attributes:

  • 'var_id': Variable ID, int type, counting from 0
  • 'is_easy': Whether this variable is a easy instance, the value is True or False
  • 'is_evidence': Whether this variable is an evidence variable, the value is True or False
  • 'label': Inferred labels: 0 is negative, 1 is positive, -1 is unknown
  • 'true_label': The true label of this variable
  • 'feature_set': All feature information owned by this variable
    {
    feature_id1: [theta1,feature_value1],
    feature_id2: [theta2,feature_value2],
    ...
    }

Attributes that may be automatically generated while the code is running

  • 'inferenced_probability': Inferred probability
  • 'probability': Inferred probability
  • 'evidential_support': Evidence support
  • 'entropy': Entropy
  • 'approximate_weight':Approximate weight
  • 'approximate_probability': Approximate probability
    ...

}

Features

features = list() #The element type is: dict:feature
feature
{
User-provided attributes

  • 'feature_id': The id of this feature, int type, counting from 0
  • 'feature_type': Whether this feature is a single factor feature or a dual factor feature, currently supports both unary_feature and binary_feature
  • 'feature_name': Feature name, optional
  • 'alpha_bound':[bound0,bound1] alpha's Upper and lower bounds
  • 'tau_bound':[bound0,bound1] tau's Upper and lower bounds
  • 'parameterize':type of int , indicating whether the feature of this type is parameterized
  • 'weight': Information about all relevant variables of this feature
    {
    var_id1: [weight_value1,feature_value1],
    (varid3,varid4): [weight_value2,feature_value2],
    ...
    }

Attributes that may be automatically generated while the code is running

  • 'tau': tau value
  • 'alpha':alpha value
  • 'regerssion': Linear regression results

}