From 43bfae8d03f2e473ccea5962a75743b1fa864c21 Mon Sep 17 00:00:00 2001
From: Lu Weizheng
Date: Wed, 29 Nov 2023 13:51:45 +0800
Subject: [PATCH] update pandas
---
ch-pandas/dataframe-merge-concat.ipynb | 1 +
ch-pandas/dataframe-pivot-melt.ipynb | 60 ++++++++-----------
.../ch-pandas/dataframe-merge-concat.ipynb | 1 +
.../ch-pandas/dataframe-pivot-melt.ipynb | 60 ++++++++-----------
docs/ch-pandas/dataframe-merge-concat.html | 3 +-
docs/ch-pandas/dataframe-pivot-melt.html | 12 ++--
docs/searchindex.js | 2 +-
7 files changed, 61 insertions(+), 78 deletions(-)
diff --git a/ch-pandas/dataframe-merge-concat.ipynb b/ch-pandas/dataframe-merge-concat.ipynb
index 335c76b..19edd66 100644
--- a/ch-pandas/dataframe-merge-concat.ipynb
+++ b/ch-pandas/dataframe-merge-concat.ipynb
@@ -15,6 +15,7 @@
"\n",
"```{figure} ../img/ch-pandas/merge.svg\n",
"---\n",
+ "width: 500px\n",
"name: merge-img\n",
"---\n",
"对两个 DataFrame 进行 merge 操作\n",
diff --git a/ch-pandas/dataframe-pivot-melt.ipynb b/ch-pandas/dataframe-pivot-melt.ipynb
index f8df793..100727c 100644
--- a/ch-pandas/dataframe-pivot-melt.ipynb
+++ b/ch-pandas/dataframe-pivot-melt.ipynb
@@ -25,7 +25,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 34,
"metadata": {
"tags": [
"hide cell",
@@ -67,7 +67,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 35,
"metadata": {},
"outputs": [
{
@@ -333,7 +333,7 @@
"16 Monitor 2 5000 presented "
]
},
- "execution_count": 15,
+ "execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
@@ -369,7 +369,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 36,
"metadata": {},
"outputs": [
{
@@ -484,7 +484,7 @@
"Trantow-Barrows 15000.0 1.333333"
]
},
- "execution_count": 16,
+ "execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
@@ -502,7 +502,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 37,
"metadata": {},
"outputs": [
{
@@ -579,7 +579,7 @@
" Wendy Yule 44250.000000 3.000000"
]
},
- "execution_count": 17,
+ "execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
@@ -597,7 +597,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 38,
"metadata": {},
"outputs": [
{
@@ -736,7 +736,7 @@
" Wendy Yule 3.0 2.0 NaN "
]
},
- "execution_count": 18,
+ "execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
@@ -765,7 +765,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 39,
"metadata": {},
"outputs": [
{
@@ -835,7 +835,7 @@
" Wendy Yule 44250.000000"
]
},
- "execution_count": 19,
+ "execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
@@ -857,17 +857,9 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 40,
"metadata": {},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/var/folders/4n/v40br47s46ggrjm9bdm64lwh0000gn/T/ipykernel_34035/1265594602.py:1: FutureWarning: The provided callable is currently using DataFrameGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string \"mean\" instead.\n",
- " pd.pivot_table(sales_df, index=[\"Manager\",\"Rep\"], values=[\"Price\"], aggfunc=[np.mean, len])\n"
- ]
- },
{
"data": {
"text/html": [
@@ -953,13 +945,13 @@
" Wendy Yule 44250.000000 4"
]
},
- "execution_count": 20,
+ "execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "pd.pivot_table(sales_df, index=[\"Manager\",\"Rep\"], values=[\"Price\"], aggfunc=[np.mean, len])"
+ "pd.pivot_table(sales_df, index=[\"Manager\",\"Rep\"], values=[\"Price\"], aggfunc=[\"mean\", len])"
]
},
{
@@ -973,7 +965,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 41,
"metadata": {},
"outputs": [
{
@@ -1185,7 +1177,7 @@
"All 1.764706 "
]
},
- "execution_count": 21,
+ "execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
@@ -1207,7 +1199,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 42,
"metadata": {},
"outputs": [
{
@@ -1401,7 +1393,7 @@
" won 1 0 0 "
]
},
- "execution_count": 22,
+ "execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
@@ -1429,7 +1421,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 43,
"metadata": {},
"outputs": [
{
@@ -1562,7 +1554,7 @@
" won 0 0 0 "
]
},
- "execution_count": 23,
+ "execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
@@ -1580,7 +1572,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 44,
"metadata": {},
"outputs": [
{
@@ -1714,7 +1706,7 @@
" won 1 0 0 "
]
},
- "execution_count": 24,
+ "execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
@@ -1734,7 +1726,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 45,
"metadata": {},
"outputs": [
{
@@ -1801,7 +1793,7 @@
"2 3 John 88 79 90"
]
},
- "execution_count": 25,
+ "execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
@@ -1820,7 +1812,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 46,
"metadata": {},
"outputs": [
{
@@ -1931,7 +1923,7 @@
"8 3 John History 90"
]
},
- "execution_count": 26,
+ "execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
diff --git a/docs/_sources/ch-pandas/dataframe-merge-concat.ipynb b/docs/_sources/ch-pandas/dataframe-merge-concat.ipynb
index 335c76b..19edd66 100644
--- a/docs/_sources/ch-pandas/dataframe-merge-concat.ipynb
+++ b/docs/_sources/ch-pandas/dataframe-merge-concat.ipynb
@@ -15,6 +15,7 @@
"\n",
"```{figure} ../img/ch-pandas/merge.svg\n",
"---\n",
+ "width: 500px\n",
"name: merge-img\n",
"---\n",
"对两个 DataFrame 进行 merge 操作\n",
diff --git a/docs/_sources/ch-pandas/dataframe-pivot-melt.ipynb b/docs/_sources/ch-pandas/dataframe-pivot-melt.ipynb
index f8df793..100727c 100644
--- a/docs/_sources/ch-pandas/dataframe-pivot-melt.ipynb
+++ b/docs/_sources/ch-pandas/dataframe-pivot-melt.ipynb
@@ -25,7 +25,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 34,
"metadata": {
"tags": [
"hide cell",
@@ -67,7 +67,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 35,
"metadata": {},
"outputs": [
{
@@ -333,7 +333,7 @@
"16 Monitor 2 5000 presented "
]
},
- "execution_count": 15,
+ "execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
@@ -369,7 +369,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 36,
"metadata": {},
"outputs": [
{
@@ -484,7 +484,7 @@
"Trantow-Barrows 15000.0 1.333333"
]
},
- "execution_count": 16,
+ "execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
@@ -502,7 +502,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 37,
"metadata": {},
"outputs": [
{
@@ -579,7 +579,7 @@
" Wendy Yule 44250.000000 3.000000"
]
},
- "execution_count": 17,
+ "execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
@@ -597,7 +597,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 38,
"metadata": {},
"outputs": [
{
@@ -736,7 +736,7 @@
" Wendy Yule 3.0 2.0 NaN "
]
},
- "execution_count": 18,
+ "execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
@@ -765,7 +765,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 39,
"metadata": {},
"outputs": [
{
@@ -835,7 +835,7 @@
" Wendy Yule 44250.000000"
]
},
- "execution_count": 19,
+ "execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
@@ -857,17 +857,9 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 40,
"metadata": {},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/var/folders/4n/v40br47s46ggrjm9bdm64lwh0000gn/T/ipykernel_34035/1265594602.py:1: FutureWarning: The provided callable is currently using DataFrameGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string \"mean\" instead.\n",
- " pd.pivot_table(sales_df, index=[\"Manager\",\"Rep\"], values=[\"Price\"], aggfunc=[np.mean, len])\n"
- ]
- },
{
"data": {
"text/html": [
@@ -953,13 +945,13 @@
" Wendy Yule 44250.000000 4"
]
},
- "execution_count": 20,
+ "execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "pd.pivot_table(sales_df, index=[\"Manager\",\"Rep\"], values=[\"Price\"], aggfunc=[np.mean, len])"
+ "pd.pivot_table(sales_df, index=[\"Manager\",\"Rep\"], values=[\"Price\"], aggfunc=[\"mean\", len])"
]
},
{
@@ -973,7 +965,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 41,
"metadata": {},
"outputs": [
{
@@ -1185,7 +1177,7 @@
"All 1.764706 "
]
},
- "execution_count": 21,
+ "execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
@@ -1207,7 +1199,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 42,
"metadata": {},
"outputs": [
{
@@ -1401,7 +1393,7 @@
" won 1 0 0 "
]
},
- "execution_count": 22,
+ "execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
@@ -1429,7 +1421,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 43,
"metadata": {},
"outputs": [
{
@@ -1562,7 +1554,7 @@
" won 0 0 0 "
]
},
- "execution_count": 23,
+ "execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
@@ -1580,7 +1572,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 44,
"metadata": {},
"outputs": [
{
@@ -1714,7 +1706,7 @@
" won 1 0 0 "
]
},
- "execution_count": 24,
+ "execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
@@ -1734,7 +1726,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 45,
"metadata": {},
"outputs": [
{
@@ -1801,7 +1793,7 @@
"2 3 John 88 79 90"
]
},
- "execution_count": 25,
+ "execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
@@ -1820,7 +1812,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 46,
"metadata": {},
"outputs": [
{
@@ -1931,7 +1923,7 @@
"8 3 John History 90"
]
},
- "execution_count": 26,
+ "execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
diff --git a/docs/ch-pandas/dataframe-merge-concat.html b/docs/ch-pandas/dataframe-merge-concat.html
index f5dc43c..79ac4e4 100644
--- a/docs/ch-pandas/dataframe-merge-concat.html
+++ b/docs/ch-pandas/dataframe-merge-concat.html
@@ -416,7 +416,8 @@ 2.6. 多表操作
pandas 的 merge()
操作可以合并两个 DataFrame
(或者称为表) ,类似于 SQL 中的 JOIN 操作。 我们可以想象成:一个大表被拆分成两个小表,两个小表都包含一些同样的数据。现在我们需要把两个小表合并,生成一个大表,大表包含了两个小表的字段。
-
+
+
图 2.8 对两个 DataFrame 进行 merge 操作
diff --git a/docs/ch-pandas/dataframe-pivot-melt.html b/docs/ch-pandas/dataframe-pivot-melt.html
index adbcff1..1e915ee 100644
--- a/docs/ch-pandas/dataframe-pivot-melt.html
+++ b/docs/ch-pandas/dataframe-pivot-melt.html
@@ -1064,15 +1064,11 @@ 2.7.1.3. aggfunc 参数