From 7ac217dd91107af4fec40ad56f4bb9f3e37c2b5b Mon Sep 17 00:00:00 2001 From: XRubberDuck Date: Sat, 23 Sep 2023 11:20:35 +0800 Subject: [PATCH 1/2] label --- ch-pandas/data-preprocessing.ipynb | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/ch-pandas/data-preprocessing.ipynb b/ch-pandas/data-preprocessing.ipynb index c042c80..2dab553 100644 --- a/ch-pandas/data-preprocessing.ipynb +++ b/ch-pandas/data-preprocessing.ipynb @@ -6,7 +6,6 @@ "metadata": {}, "source": [ "# 数据处理\n", - ":label:`data-preprocessing`\n", "\n", "数据处理工作包括处理重复值、缺失值和异常值,生成新的列或者行等。" ] @@ -3423,4 +3422,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} From efa3ec9ee95ec1ddd8b72b5b404d89344953687b Mon Sep 17 00:00:00 2001 From: XRubberDuck Date: Sat, 23 Sep 2023 11:28:00 +0800 Subject: [PATCH 2/2] remove label --- ch-pandas/dataframe-groupby.ipynb | 1 - ch-pandas/dataframe-merge-concat.ipynb | 1 - ch-pandas/dataframe-slicing.ipynb | 3 +-- ch-pandas/series-dataframe.ipynb | 3 +-- 4 files changed, 2 insertions(+), 6 deletions(-) diff --git a/ch-pandas/dataframe-groupby.ipynb b/ch-pandas/dataframe-groupby.ipynb index fdda7b3..ef0615a 100644 --- a/ch-pandas/dataframe-groupby.ipynb +++ b/ch-pandas/dataframe-groupby.ipynb @@ -6,7 +6,6 @@ "metadata": {}, "source": [ "# 分组汇总\n", - ":label:`dataframe-groupby`\n", "\n", "实际的数据分析中,经常需要对某一类数据进行统计分析。比如,假如我们拥有全国所有人的身高和体重数据,我们想按照省份分组,统计每个省的平均身高和平均体重,这时候就需要使用分组操作。pandas 提供了 `groupby` 函数进行类似的分组汇总操作。:numref:`groupby-img` 计算平均身高的分组汇总流程,主要包括两部分:分组与汇总。其中分组阶段将同一类的内容归结到相同的组中;汇总阶段将所关心的数据进行计算,比如求和、求平均等。\n", "\n", diff --git a/ch-pandas/dataframe-merge-concat.ipynb b/ch-pandas/dataframe-merge-concat.ipynb index 91e4f8a..ba65ce1 100644 --- a/ch-pandas/dataframe-merge-concat.ipynb +++ b/ch-pandas/dataframe-merge-concat.ipynb @@ -6,7 +6,6 @@ "metadata": {}, "source": [ "# 多表操作\n", - ":label:`dataframe-merge-concat`\n", "\n", "之前的操作主要在单个 `DataFrame` ,实际上,我们经常需要对多个 `DataFrame` 联合起来进行分析。pandas 提供了多 `DataFrame` 之间的合并和连接的操作,分别是 `merge()` 和 `concat()` 函数。比如,我们可以将两个 `DataFrame` 合并成一个,且保留所有的列。\n", "\n", diff --git a/ch-pandas/dataframe-slicing.ipynb b/ch-pandas/dataframe-slicing.ipynb index be5c7ef..4f772b7 100644 --- a/ch-pandas/dataframe-slicing.ipynb +++ b/ch-pandas/dataframe-slicing.ipynb @@ -6,7 +6,6 @@ "metadata": {}, "source": [ "# 数据切片\n", - ":label:`dataframe-slicing`\n", "\n", "实际中,我们常常不是分析整个数据,而是数据中的部分子集。如何根据特定的条件获得所需要的数据是本节的主要内容。" ] @@ -2453,4 +2452,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/ch-pandas/series-dataframe.ipynb b/ch-pandas/series-dataframe.ipynb index 2afeb5d..b44f6b7 100644 --- a/ch-pandas/series-dataframe.ipynb +++ b/ch-pandas/series-dataframe.ipynb @@ -6,7 +6,6 @@ "metadata": {}, "source": [ "# Series 与 DataFrame\n", - ":label:`series-dataframe`\n", "\n", "pandas 的核心数据结构有两个: Series 和 DataFrame。" ] @@ -1218,4 +1217,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +}