-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy patheval.py
286 lines (241 loc) · 10.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Evaluates a trained LDIF/SIF model."""
import os
import random
import time
from absl import app
from absl import flags
import pandas as pd
# Imports have to be in this order to silence tensorflow:
# pylint: disable=g-import-not-at-top
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import tqdm
# LDIF is an internal package, should be imported last.
# pylint: disable=g-bad-import-order
from ldif.inference import predict
from ldif.util import file_util
from ldif.util import gaps_util
from ldif.util import gpu_util
from ldif.util import path_util
from ldif.inference import example as examples
from ldif.inference import metrics
from ldif.inference import util
from ldif.util.file_util import log
# pylint: enable=g-bad-import-order
# pylint: enable=g-import-not-at-top
FLAGS = flags.FLAGS
flags.DEFINE_string(
'dataset_directory', '', 'The path to the dataset to'
'evaluate (should be the same as the dataset_directory flag'
' passed to meshes2dataset.py to create the dataset.')
flags.DEFINE_string(
'result_directory', '', 'The directory where result files'
' should be written. Only necessary if one of the save_'
' flags is set to true (all are false by default).')
flags.DEFINE_boolean(
'save_meshes', False, 'If true, the output meshes will'
' be written to the result directory with a structure mirroring'
' the dataset directory.')
flags.DEFINE_boolean(
'save_ldifs', False, 'If provided, the output ldif.txt files'
' will be written to the result directory with a structure'
' mirroring the dataset directory. Should not be the same'
' directory as save_meshes_to if provided.')
flags.DEFINE_boolean(
'save_results', False, 'If provided, two CSV files will be written to the'
' result directory. The first will contain the mean results over each class'
', while the second will contain the results for every mesh in the'
' dataset split.')
flags.DEFINE_boolean(
'use_gpu_for_tensorflow', True, 'Whether to enable use of'
' the GPU by tensorflow. Set to false by default because'
' running eval while training is common, but not possible'
' if only a single GPU is available and the eval job'
' needs it, because tensorflow allocates most GPU memory.'
' Note that regardless of this setting, if the inference'
' mode is set to use the custom CUDA kernel, that will'
' use a gpu anyway (it can be separately disabled).'
' However, disabling that is typically not necessary'
' because it uses only a very a small amount of VRAM.')
flags.DEFINE_boolean(
'use_inference_kernel', True, 'Whether to enable use'
' of the custom CUDA kernel for LDIF inference. Note that'
' to be used, it must first be compiled (this step should'
' hopefully be easy, see the README for more details).'
' The speed increase should be several orders of magnitude'
', so it is highly recommended.')
flags.DEFINE_string('experiment_name', 'reproduce-ldif',
'The name of the experiment to'
' evaluate')
flags.DEFINE_integer(
'ckpt', -1, 'The index of the checkpoint to evaluate. If'
' -1, then evaluates the most recent checkpoint.')
flags.DEFINE_string('split', 'test', 'The split(s) to evaluate, comma separated.')
flags.DEFINE_float(
'eval_frac', 1.0, 'The fraction of the dataset to evaluate.'
' If the fraction is less than 1, then the subset will be'
' chosen randomly.')
flags.DEFINE_boolean(
'compute_metrics', True, 'If false, the model will be'
' run, but metrics will not be computed.')
flags.DEFINE_string(
'model_directory', 'trained_models/', 'The path to the trained model root'
' directory. Can be absolute or relative to the LDIF repository root.')
flags.DEFINE_boolean('visualize', False,
'If true, interactively visualizes each reconstruction.')
flags.DEFINE_string(
'log_level', 'INFO',
'One of VERBOSE, INFO, WARNING, ERROR. Sets logs to print '
'only at or above the specified level.')
flags.DEFINE_integer('resolution', 256,
'The resolution at which to do marching cubes.')
flags.DEFINE_string(
'only_class', '', 'Only evaluate on this class, if provided.')
def get_model_root():
"""Finds the path to the trained model's root directory based on flags."""
ldif_abspath = path_util.get_path_to_ldif_root()
model_dir_is_relative = FLAGS.model_directory[0] != '/'
if model_dir_is_relative:
model_dir_path = os.path.join(ldif_abspath, FLAGS.model_directory)
else:
model_dir_path = FLAGS.model_directory
if not os.path.isdir(model_dir_path):
raise ValueError(f'Could not find model directory {model_dir_path}')
return model_dir_path
def load_newest_model():
"""Loads the newest checkpoint of the specified model."""
model_root = get_model_root()
model_name = 'sif-transcoder'
experiment_name = FLAGS.experiment_name
encoder = predict.DepthEncoder.from_modeldir(
model_root, model_name, experiment_name, xid=1, ckpt_idx=-1)
decoder = predict.Decoder.from_modeldir(
model_root, model_name, experiment_name, xid=1, ckpt_idx=-1)
decoder.use_inference_kernel = FLAGS.use_inference_kernel
return encoder, decoder
def get_evaluation_directories(split):
registry_path = f'{FLAGS.dataset_directory}/{split}.txt'
items_to_eval = file_util.readlines(registry_path)
return items_to_eval
def filter_by_eval_frac(items):
tmp = [x for x in items]
random.shuffle(tmp)
to_keep = int(len(tmp) * FLAGS.eval_frac)
to_keep = max(1, to_keep)
return tmp[:to_keep]
def filter_by_class(items):
if not FLAGS.only_class:
return items
class_or_synset = FLAGS.only_class
if class_or_synset in util.cat_to_synset:
key = util.cat_to_synset[class_or_synset]
else:
key = class_or_synset
class_items = [x for x in items if f'/{key}/' in x]
if not class_items:
raise ValueError(f'Filtering by class {key} results in no elements.')
return class_items
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
log.set_level(FLAGS.log_level)
tf.disable_v2_behavior()
gpu_util.get_free_gpu_memory(0)
if FLAGS.use_gpu_for_tensorflow and FLAGS.use_inference_kernel:
log.info('Limiting TensorFlow memory by 1GB so the inference kernel'
' has enough left over to run.')
if not FLAGS.dataset_directory:
raise ValueError('A dataset directory must be provided.')
if not FLAGS.result_directory:
if FLAGS.save_results or FLAGS.save_meshes or FLAGS.save_ldifs:
raise ValueError('A result directory must be provided to save results.')
else:
if not os.path.isdir(FLAGS.result_directory):
os.makedirs(FLAGS.result_directory)
if not FLAGS.use_gpu_for_tensorflow:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
log.info('Loading model...')
# Try to detect the most common error early for a good warning message:
if not os.path.isdir(get_model_root()):
raise ValueError(f"Couldn't find a trained model at {get_model_root()}")
encoder, decoder = load_newest_model()
log.info('Evaluating metrics...')
splits = [x for x in FLAGS.split.split(',') if x]
log.info(f'Will evaluate on splits: {splits}')
for split in splits:
log.info(f'Starting evaluation for split {split}.')
dataset_items = get_evaluation_directories(split)
log.info(f'The split has {len(dataset_items)} elements.')
results = []
to_eval = filter_by_class(dataset_items)
to_eval = filter_by_eval_frac(to_eval)
for path in tqdm.tqdm(to_eval):
e = examples.InferenceExample.from_directory(path)
embedding = encoder.run_example(e)
iou = decoder.iou(embedding, e)
gt_mesh = e.gt_mesh
mesh = decoder.extract_mesh(embedding, resolution=FLAGS.resolution)
if FLAGS.visualize:
# Visualize in the normalized_coordinate frame, so the camera is
# always reasonable. Metrics are computed in the original frame.
gaps_util.mshview([e.normalized_gt_mesh, mesh])
# TODO(kgenova) gaps2occnet is poorly named, it is really normalized ->
# unnormalized (where 'gaps' is the normalized training frame and 'occnet'
# is whatever the original frame of the input mesh was)
post_extract_start = time.time()
mesh.apply_transform(e.gaps2occnet)
if FLAGS.save_meshes:
path = (f'{FLAGS.result_directory}/meshes/{split}/{e.cat}/'
f'{e.mesh_hash}.ply')
if not os.path.isdir(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
mesh.export(path)
if FLAGS.save_ldifs:
path = (f'{FLAGS.result_directory}/ldifs/{split}/{e.cat}/'
f'{e.mesh_hash}.txt')
if not os.path.isdir(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
decoder.savetxt(embedding, path)
nc, fst, fs2t, chamfer = metrics.all_mesh_metrics(mesh, gt_mesh)
log.verbose(f'Mesh: {e.mesh_name}')
log.verbose(f'IoU: {iou}.')
log.verbose(f'F-Score (tau): {fst}')
log.verbose(f'Chamfer: {chamfer}')
log.verbose(f'F-Score (2*tau): {fs2t}')
log.verbose(f'Normal Consistency: {nc}')
results.append({
'key': e.mesh_name,
'Normal Consistency': nc,
'F-Score (tau)': fst,
'F-Score (2*tau)': fs2t,
'Chamfer': chamfer,
'IoU': iou
})
post_extract_end = time.time()
log.verbose(f'Time post extract: {post_extract_end - post_extract_start}')
results = pd.DataFrame(results)
if FLAGS.save_results:
complete_csv = results.to_csv()
result_path = f'{FLAGS.result_directory}/full_results_{split}.csv'
file_util.writetxt(result_path, complete_csv)
final_results = metrics.aggregate_extracted(results)
if FLAGS.save_results:
summary_out_path = f'{FLAGS.result_directory}/result_summary_{split}.csv'
file_util.writetxt(summary_out_path, final_results.to_csv())
if __name__ == '__main__':
app.run(main)