-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathconfig.py
108 lines (95 loc) · 6.51 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configargparse
def config_parser():
parser = configargparse.ArgumentParser()
# general
parser.add_argument('--config', is_config_file=True, help='config file path')
parser.add_argument('--rootdir', type=str,
default='/home/qw246/S7/code/IBRNet/',
help='the path to the project root directory. Replace this path with yours!')
parser.add_argument("--expname", type=str, help='experiment name')
parser.add_argument('--distributed', action='store_true', help='if use distributed training')
parser.add_argument("--local_rank", type=int, default=0, help='rank for distributed training')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
########## dataset options ##########
## train and eval dataset
parser.add_argument("--train_dataset", type=str, default='ibrnet_collected',
help='the training dataset, should either be a single dataset, '
'or multiple datasets connected with "+", for example, ibrnet_collected+llff+spaces')
parser.add_argument("--dataset_weights", nargs='+', type=float, default=[],
help='the weights for training datasets, valid when multiple datasets are used.')
parser.add_argument("--train_scenes", nargs='+', default=[],
help='optional, specify a subset of training scenes from training dataset')
parser.add_argument('--eval_dataset', type=str, default='llff_test', help='the dataset to evaluate')
parser.add_argument('--eval_scenes', nargs='+', default=[],
help='optional, specify a subset of scenes from eval_dataset to evaluate')
## others
parser.add_argument("--testskip", type=int, default=8,
help='will load 1/N images from test/val sets, '
'useful for large datasets like deepvoxels or nerf_synthetic')
########## model options ##########
## ray sampling options
parser.add_argument('--sample_mode', type=str, default='uniform',
help='how to sample pixels from images for training:'
'uniform|center')
parser.add_argument('--center_ratio', type=float, default=0.8, help='the ratio of center crop to keep')
parser.add_argument("--N_rand", type=int, default=32 * 16,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--chunk_size", type=int, default=1024 * 4,
help='number of rays processed in parallel, decrease if running out of memory')
## model options
parser.add_argument('--coarse_feat_dim', type=int, default=32, help="2D feature dimension for coarse level")
parser.add_argument('--fine_feat_dim', type=int, default=32, help="2D feature dimension for fine level")
parser.add_argument('--num_source_views', type=int, default=10,
help='the number of input source views for each target view')
parser.add_argument('--rectify_inplane_rotation', action='store_true', help='if rectify inplane rotation')
parser.add_argument('--coarse_only', action='store_true', help='use coarse network only')
parser.add_argument("--anti_alias_pooling", type=int, default=1, help='if use anti-alias pooling')
########## checkpoints ##########
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ckpt_path", type=str, default="",
help='specific weights npy file to reload for coarse network')
parser.add_argument("--no_load_opt", action='store_true',
help='do not load optimizer when reloading')
parser.add_argument("--no_load_scheduler", action='store_true',
help='do not load scheduler when reloading')
########### iterations & learning rate options ##########
parser.add_argument("--n_iters", type=int, default=250000, help='num of iterations')
parser.add_argument("--lrate_feature", type=float, default=1e-3, help='learning rate for feature extractor')
parser.add_argument("--lrate_mlp", type=float, default=5e-4, help='learning rate for mlp')
parser.add_argument("--lrate_decay_factor", type=float, default=0.5,
help='decay learning rate by a factor every specified number of steps')
parser.add_argument("--lrate_decay_steps", type=int, default=50000,
help='decay learning rate by a factor every specified number of steps')
########## rendering options ##########
parser.add_argument("--N_samples", type=int, default=64, help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=64, help='number of important samples per ray')
parser.add_argument("--inv_uniform", action='store_true',
help='if True, will uniformly sample inverse depths')
parser.add_argument("--det", action='store_true', help='deterministic sampling for coarse and fine samples')
parser.add_argument("--white_bkgd", action='store_true',
help='apply the trick to avoid fitting to white background')
parser.add_argument("--render_stride", type=int, default=1,
help='render with large stride for validation to save time')
########## logging/saving options ##########
parser.add_argument("--i_print", type=int, default=100, help='frequency of terminal printout')
parser.add_argument("--i_img", type=int, default=500, help='frequency of tensorboard image logging')
parser.add_argument("--i_weights", type=int, default=10000, help='frequency of weight ckpt saving')
########## evaluation options ##########
parser.add_argument("--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
return parser