-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detector.py
76 lines (69 loc) · 3.79 KB
/
face_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# pylint: disable=C0103
# pylint: disable=E1101
import sys
import time
import numpy as np
import tensorflow as tf
import cv2
import glob
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils_color as vis_util
def detector(_img_, _confidence_):
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '../model/frozen_inference_graph_face.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '../protos/face_label_map.pbtxt'
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
img_height, img_width, img_channel = cv2.imread(_img_).shape
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
with detection_graph.as_default():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(graph=detection_graph, config=config) as sess:
img = cv2.imread(_img_)
image_np = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run([boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded})
#elapsed_time = time.time() - start_time
#print(boxes.shape, boxes)
#print(scores.shape,scores)
#print(classes.shape,classes)
#print(num_detections)
no_of_det = len([score for score in scores[0] if score >= _confidence_])
#print(len(valid_detections))
# Visualization of the results of a detection.
#vis_util.visualize_boxes_and_labels_on_image_array(img, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=4)
#out.write(image)
#cv2.imshow('Frame', img)
#bbox and confidence score for detections above the threshold limit
bbox = boxes[0][:no_of_det]
conf_score = scores[0][:no_of_det]
coord_dict = dict(zip(conf_score, bbox))
#denorm the bbox coordinates
for key, value in coord_dict.items():
coord_dict[key] = [value[1] * img_width, value[0] * img_height, value[3] * img_width, value[2] * img_height]
return coord_dict