Skip to content

Latest commit

 

History

History
92 lines (59 loc) · 4.6 KB

README.md

File metadata and controls

92 lines (59 loc) · 4.6 KB

Activity Recognition from Egocentric Photo-Streams

Introduction

This repository contains the code used in the paper Batch-Based Activity Recognition From Egocentric Photo-Streams Revisited

If you use this code or its database, please consider citing:

@Article{paa2018,
	author="Cartas, Alejandro
	and Mar{\'i}n, Juan
	and Radeva, Petia
	and Dimiccoli, Mariella",
	title="Batch-based activity recognition from egocentric photo-streams revisited",
	journal="Pattern Analysis and Applications",
	year="2018",
}

Contents

  1. Installation
  2. Static Image Classification
  3. Downloads

Installation

  1. Clone this repository

    git clone --recursive https://github.com/gorayni/egocentric_photostreams.git
    
  2. Download the NTCIR-12 dataset at http://ntcir-lifelog.computing.dcu.ie/NTCIR12/.

  3. Create a symbolic link datasets/ntcir/images pointing to NTCIR_Lifelog_formal_run_Dataset/NTCIR-Lifelog_formal_run_images.

  4. Split the data by executing the Dataset split notebook. This will create the cross-validation splits in the directory data.

Static Image Classification

Training

Once the dataset was split, then the models can be trained by

python training/train_cnn.py --network=vgg-16 --data_dir=data/static --weights_dir=weights/vgg-16

python training/train_rf.py --network=vgg-16 --data_dir=data/static --weights_dir=weights/vgg-16 -l 'predictions' 'fc1' 
python training/train_rf.py --network=vgg-16 --data_dir=data/static --weights_dir=weights/vgg-16 -l 'fc1'
python training/train_rf.py --network=vgg-16 --data_dir=data/static --weights_dir=weights/vgg-16 -l 'fc2' 
python training/train_rf.py --network=vgg-16 --data_dir=data/static --weights_dir=weights/vgg-16 -l 'fc1' 'fc2'


python training/train_cnn.py --network=resNet50 --data_dir=data/static --weights_dir=weights/resNet50
python training/train_rf.py --network=resNet50 --data_dir=data/static --weights_dir=weights/resNet50 -l 'flatten_1'

python training/train_cnn.py --network=inceptionV3 --data_dir=data/static --weights_dir=weights/inceptionV3
python training/train_rf.py --network=inceptionV3 --data_dir=data/static --weights_dir=weights/inceptionV3 -l 'global_average_pooling2d_1' 

Testing

python testing/test_cnn.py --network=vgg-16 --data_dir=data/static --results_dir=results/vgg-16 --weights_dir=weights/vgg-16 

python testing/test_rf.py --network=vgg-16 --data_dir=data/static --results_dir=results/vgg-16 --weights_dir=weights/vgg-16 --layer 'predictions' 'fc1'
python testing/test_rf.py --network=vgg-16 --data_dir=data/static --results_dir=results/vgg-16 --weights_dir=weights/vgg-16 --layer 'fc1'
python testing/test_rf.py --network=vgg-16 --data_dir=data/static --results_dir=results/vgg-16 --weights_dir=weights/vgg-16 --layer 'fc2'
python testing/test_rf.py --network=vgg-16 --data_dir=data/static --results_dir=results/vgg-16 --weights_dir=weights/vgg-16 --layer 'fc1' 'fc2'

python testing/test_cnn.py --network=resNet50 --data_dir=data/static --results_dir=results/resNet50 --weights_dir=weights/resNet50

python testing/test_rf.py --network=resNet50 --data_dir=data/static --results_dir=results/resNet50 --weights_dir=weights/resNet50 --layer 'flatten_1'

python testing/test_cnn.py --network=inceptionV3 --data_dir=data/static --results_dir=results/inceptionV3 --weights_dir=weights/inceptionV3

python testing/test_rf.py --network=inceptionV3 --data_dir=data/static --results_dir=results/inceptionV3 --weights_dir=weights/inceptionV3 -l 'global_average_pooling2d_1'

Downloads

Dataset

The NTCIR-12 dataset is available here.

Our annotations and categories are available in the datasets/ntcir directory of this repository.

Static Image Classification

  1. VGG-16 [CNN weights] [RF (on FC1)]

  2. ResNet [CNN weights] [RF]

  3. InceptionV3 [CNN weights] [RF]