forked from karpathy/llm.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_gpt2.c
195 lines (172 loc) · 7.8 KB
/
test_gpt2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#define TESTING
#include "train_gpt2.c"
// poor man's tensor checker
int check_tensor(float *a, float *b, int n, const char* label) {
int print_upto = 5;
int ok = 1;
float maxdiff = 0.0f;
float tol = 2e-2;
printf("%s\n", label);
for (int i = 0; i < n; i++) {
// look at the diffence at position i of these two tensors
float diff = fabsf(a[i] - b[i]);
// keep track of the overall error
ok = ok && (diff <= tol);
if (diff > maxdiff) { maxdiff = diff; }
// for the first few elements of each tensor, pretty print
// the actual numbers, so we can do a visual, qualitative proof/assessment
if (i < print_upto) {
if (diff <= tol) {
if (i < print_upto) { printf("OK "); }
} else {
if (i < print_upto) { printf("NOT OK "); }
}
printf("%f %f\n", a[i], b[i]);
}
}
// print the final result for this tensor
if (ok) {
printf("TENSOR OK, maxdiff = %e\n", maxdiff);
} else {
printf("TENSOR NOT OK, maxdiff = %e\n", maxdiff);
}
return ok;
}
int main(int argc, char *argv[]) {
// build the GPT-2 model from a checkpoint
GPT2 model;
gpt2_build_from_checkpoint(&model, "gpt2_124M.bin");
int C = model.config.channels;
int V = model.config.vocab_size;
int Vp = model.config.padded_vocab_size;
int maxT = model.config.max_seq_len;
int L = model.config.num_layers;
// load additional information that we will use for debugging and error checking
FILE *state_file = fopen("gpt2_124M_debug_state.bin", "rb");
if (state_file == NULL) { printf("Error opening state file\n"); return 1; }
int state_header[256];
fread(state_header, sizeof(int), 256, state_file);
if (state_header[0] != 20240327) { printf("Bad magic state file\n"); return 1; }
if (state_header[1] != 2) {
printf("Bad version in state file\n");
printf("---> HINT: try to re-run `python train_gpt2.py`\n");
return 1;
}
int B = state_header[2]; // batch size, e.g. 4
int T = state_header[3]; // time / sequence length (e.g. 64, up to maxT)
printf("[State]\n");
printf("batch_size: %d\n", B);
printf("seq_len: %d\n", T);
ParameterTensors expected_grads;
float* expected_grads_memory = malloc_and_point_parameters(&expected_grads, model.param_sizes);
// inputs and expected outputs, only used for error checking
int* x = (int*) malloc(B * T * sizeof(int));
int* y = (int*) malloc(B * T * sizeof(int));
float* expected_logits = (float*) malloc(B * T * V * sizeof(float));
float* expected_loss = (float*) malloc(1 * sizeof(float));
// read reference information from Python
fread(x, sizeof(int), B*T, state_file);
fread(y, sizeof(int), B*T, state_file);
fread(expected_logits, sizeof(float), B*T*V, state_file);
fread(expected_loss, sizeof(float), 1, state_file);
fread(expected_grads_memory, sizeof(float), model.num_parameters, state_file);
fclose(state_file);
// overall OK signal for the test
int allok = 1;
// let's do 10 training iterations, following the pytorch code
float expected_losses[10] = {
5.270007133483887,
4.059706687927246,
3.3751230239868164,
2.8007826805114746,
2.315382242202759,
1.8490285873413086,
1.3946564197540283,
0.9991465210914612,
0.6240804195404053,
0.37651097774505615
};
for (int step = 0; step < 10; step++) {
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
gpt2_forward(&model, x, y, B, T);
gpt2_zero_grad(&model);
gpt2_backward(&model);
clock_gettime(CLOCK_MONOTONIC, &end);
double time_elapsed_s = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1e9;
if (step == 0) {
// error checking at step 0 for reference activations/gradients
// at this point, target should be equal to expected_logits, let's compare
int logits_ok = 1;
float* calculated_logits = model.acts.logits;
float max_diff = 0.0f;
for (int bt = 0; bt < B*T; bt++) {
for (int v = 0; v < V; v++) { // note we only loop to V (ignoring padding)
int i = bt * Vp + v; // linearized index, using Vp
if (i < 10) {
printf("%f, %f\n", expected_logits[i], calculated_logits[i]);
}
float diff = fabsf(expected_logits[bt*V + v] - calculated_logits[i]);
max_diff = fmaxf(max_diff, diff);
if (diff >= 1e-2f) {
printf("MISMATCH AT INDEX %d,%d: ", bt, v);
printf("%f %f\n", expected_logits[bt*V + v], calculated_logits[i]);
logits_ok = 0;
bt = B*T; // to break out of both loops
break;
}
}
}
if(!logits_ok) { printf("NOT "); }
printf("OK (LOGITS), max_diff = %e\n", max_diff);
allok = allok && logits_ok;
// compare the achieved loss
if (fabsf(model.mean_loss - *expected_loss) >= 1e-2) {
printf("LOSS MISMATCH: %f %f\n", model.mean_loss, *expected_loss);
allok = 0;
} else {
printf("LOSS OK: %f %f\n", model.mean_loss, *expected_loss);
}
// finally check all the gradients
int gradoks[16];
ParameterTensors grads = model.grads;
gradoks[0] = check_tensor(grads.wte, expected_grads.wte, V*C, "dwte");
gradoks[1] = check_tensor(grads.wpe, expected_grads.wpe, maxT*C, "dwpe");
gradoks[2] = check_tensor(grads.ln1w, expected_grads.ln1w, L*C, "dln1w");
gradoks[3] = check_tensor(grads.ln1b, expected_grads.ln1b, L*C, "dln1b");
gradoks[4] = check_tensor(grads.qkvw, expected_grads.qkvw, L*3*C*C, "dqkvw");
gradoks[5] = check_tensor(grads.qkvb, expected_grads.qkvb, L*3*C, "dqkvb");
gradoks[6] = check_tensor(grads.attprojw, expected_grads.attprojw, L*C*C, "dattprojw");
gradoks[7] = check_tensor(grads.attprojb, expected_grads.attprojb, L*C, "dattprojb");
gradoks[8] = check_tensor(grads.ln2w, expected_grads.ln2w, L*C, "dln2w");
gradoks[9] = check_tensor(grads.ln2b, expected_grads.ln2b, L*C, "dln2b");
gradoks[10] = check_tensor(grads.fcw, expected_grads.fcw, L*4*C*C, "dfcw");
gradoks[11] = check_tensor(grads.fcb, expected_grads.fcb, L*4*C, "dfcb");
gradoks[12] = check_tensor(grads.fcprojw, expected_grads.fcprojw, L*C*4*C, "dfcprojw");
gradoks[13] = check_tensor(grads.fcprojb, expected_grads.fcprojb, L*C, "dfcprojb");
gradoks[14] = check_tensor(grads.lnfw, expected_grads.lnfw, C, "dlnfw");
gradoks[15] = check_tensor(grads.lnfb, expected_grads.lnfb, C, "dlnfb");
for (int i = 0; i < 16; i++) {
allok = allok && gradoks[i];
}
}
gpt2_update(&model, 1e-4f, 0.9f, 0.999f, 1e-8f, 0.01f, step+1);
// compare the losses
float expected_loss = expected_losses[step];
float actual_loss = model.mean_loss;
int step_loss_ok = fabsf(expected_loss - actual_loss) < 1e-2;
allok = allok && step_loss_ok;
// print the timing information at the end
printf("step %d: loss %f (took %f ms) OK = %d\n", step, model.mean_loss, time_elapsed_s * 1000, step_loss_ok);
}
// final judgement
printf("overall okay: %d\n", allok);
// free everything
free(x);
free(y);
free(expected_logits);
free(expected_loss);
free(expected_grads_memory);
gpt2_free(&model);
return 0;
}