-
Notifications
You must be signed in to change notification settings - Fork 63
/
physmodels.lib
3984 lines (3654 loc) · 167 KB
/
physmodels.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//##################################### physmodels.lib ###################################
// Faust physical modeling library. Its official prefix is `pm`.
//
// This library provides an environment to facilitate physical modeling of musical
// instruments. It contains dozens of functions implementing low and high level
// elements going from a simple waveguide to fully operational models with
// built-in UI, etc.
//
// It is organized as follows:
//
// * [Global Variables](#global-variables): useful pre-defined variables for
// physical modeling (e.g., speed of sound, etc.).
// * [Conversion Tools](#conversion-tools-1): conversion functions specific
// to physical modeling (e.g., length to frequency, etc.).
// * [Bidirectional Utilities](#bidirectional-utilities): functions to create
// bidirectional block diagrams for physical modeling.
// * [Basic Elements](#basic-elements-1): waveguides, specific types of filters, etc.
// * [String Instruments](#string-instruments): various types of strings
// (e.g., steel, nylon, etc.), bridges, guitars, etc.
// * [Bowed String Instruments](#bowed-string-instruments): parts and models
// specific to bowed string instruments (e.g., bows, bridges, violins, etc.).
// * [Wind Instrument](#wind-instruments): parts and models specific to wind
// instruments (e.g., reeds, mouthpieces, flutes, clarinets, etc.).
// * [Exciters](#exciters): pluck generators, "blowers", etc.
// * [Modal Percussions](#modal-percussions): percussion instruments based on
// modal models.
// * [Vocal Synthesis](#vocal-synthesis): functions for various vocal synthesis
// techniques (e.g., fof, source/filter, etc.) and vocal synthesizers.
// * [Misc Functions](#misc-functions): any other functions that don't fit in
// the previous category (e.g., nonlinear filters, etc.).
//
// This library is part of the Faust Physical Modeling ToolKit.
// More information on how to use this library can be found on this [page](https://ccrma.stanford.edu/~rmichon/pmFaust) or this [video](https://faust.grame.fr/community/events/#introduction-to-the-faust-physical-modeling-toolkit-romain-michon). Tutorials on how to make
// physical models of musical instruments using Faust can be found
// [here](https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-physical-models-of-musical-instruments-with-faust) as well.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/physmodels.lib>
//########################################################################################
// Authors: Romain Michon, Pierre-Amaury Grumiaux, and Yann Orlarey
import("stdfaust.lib");
declare name "Faust Physical Models Library";
declare version "1.1.0";
/*
TODO:
- It'd be cool to have a version of the block diagram generator that automatically flips
things based on the use of chains, etc.
- When setting pole of filters by hand (e.g. smooth, should adjust pole in function of SR)
- Probably need a single resonator function / see how to integrate that with "mode"
- Need a non-linear function and see how this can be integrated with modal synthesis
- See how bowed modal models could be integrated to this
- Currently still missing keyboard instruments
- Currently still missing vocal synth: easy to fix (create a formant filter function)
- Real polyphonic instruments should be designated with some kind of prefix (e.g.,
full)
*/
//=============================Global Variables===========================================
// Useful pre-defined variables for physical modeling.
//========================================================================================
//--------------`(pm.)speedOfSound`----------
// Speed of sound in meters per second (340m/s).
//--------------------------------------
speedOfSound = 340;
//--------------`(pm.)maxLength`----------
// The default maximum length (3) in meters of strings and tubes used in this
// library. This variable should be overriden to allow longer strings or tubes.
//--------------------------------------
maxLength = 3;
//================================Conversion Tools=======================================
// Useful conversion tools for physical modeling.
//========================================================================================
//--------------`(pm.)f2l`----------
// Frequency to length in meters.
//
// #### Usage
//
// ```
// f2l(freq) : distanceInMeters
// ```
//
// Where:
//
// * `freq`: the frequency
//-------------------------------
f2l(freq) = speedOfSound/freq;
//--------------`(pm.)l2f`----------
// Length in meters to frequency.
//
// #### Usage
//
// ```
// l2f(length) : freq
// ```
//
// Where:
//
// * `length`: length/distance in meters
//-------------------------------
l2f(length) = speedOfSound/length;
//--------------`(pm.)l2s`----------
// Length in meters to number of samples.
//
// #### Usage
//
// ```
// l2s(l) : numberOfSamples
// ```
//
// Where:
//
// * `l`: length in meters
//-------------------------------
l2s(l) = l*ma.SR/speedOfSound;
//=============================Bidirectional Utilities====================================
// Set of fundamental functions to create bi-directional block diagrams in Faust.
// These elements are used as the basis of this library to connect high level
// elements (e.g., mouthpieces, strings, bridge, instrument body, etc.). Each
// block has 3 inputs and 3 outputs. The first input/output carry left going
// waves, the second input/output carry right going waves, and the third
// input/output is used to carry any potential output signal to the end of the
// algorithm.
//========================================================================================
//--------------`(pm.)basicBlock`----------
// Empty bidirectional block to be used with [`chain`](#chain): 3 signals ins
// and 3 signals out.
//
// #### Usage
//
// ```
// chain(basicBlock : basicBlock : etc.)
// ```
//-------------------------------
basicBlock = _,_,_;
//-------`(pm.)chain`----------
// Creates a chain of bidirectional blocks.
// Blocks must have 3 inputs and outputs. The first input/output carry left
// going waves, the second input/output carry right going waves, and the third
// input/output is used to carry any potential output signal to the end of the
// algorithm. The implied one sample delay created by the `~` operator is
// generalized to the left and right going waves. Thus, `n` blocks in `chain()`
// will add an `n` samples delay to both left and right going waves.
//
// #### Usage
//
// ```
// leftGoingWaves,rightGoingWaves,mixedOutput : chain( A : B ) : leftGoingWaves,rightGoingWaves,mixedOutput
// with{
// A = _,_,_;
// B = _,_,_;
// };
// ```
//-----------------------------
chain(A:As) = ((ro.crossnn(1),_',_ : _,A : ro.crossnn(1),_,_ : _,chain(As) : ro.crossnn(1),_,_)) ~ _ : !,_,_,_;
chain(A) = A;
//-------`(pm.)inLeftWave`--------------
// Adds a signal to left going waves anywhere in a [`chain`](#chain) of blocks.
//
// #### Usage
//
// ```
// model(x) = chain(A : inLeftWave(x) : B)
// ```
//
// Where `A` and `B` are bidirectional blocks and `x` is the signal added to left
// going waves in that chain.
//--------------------------------
inLeftWave(x) = +(x),_,_;
//-------`(pm.)inRightWave`--------------
// Adds a signal to right going waves anywhere in a [`chain`](#chain) of blocks.
//
// #### Usage
//
// ```
// model(x) = chain(A : inRightWave(x) : B)
// ```
//
// Where `A` and `B` are bidirectional blocks and `x` is the signal added to right
// going waves in that chain.
//--------------------------------
inRightWave(x) = _,+(x),_;
//-------`(pm.)in`--------------
// Adds a signal to left and right going waves anywhere in a [`chain`](#chain)
// of blocks.
//
// #### Usage
//
// ```
// model(x) = chain(A : in(x) : B)
// ```
//
// Where `A` and `B` are bidirectional blocks and `x` is the signal added to
// left and right going waves in that chain.
//--------------------------------
in(x) = +(x),+(x),_;
//-------`(pm.)outLeftWave`--------------
// Sends the signal of left going waves to the output channel of the [`chain`](#chain).
//
// #### Usage
//
// ```
// chain(A : outLeftWave : B)
// ```
//
// Where `A` and `B` are bidirectional blocks.
//--------------------------------
outLeftWave(x,y,s) = x,y,x+s;
//-------`(pm.)outRightWave`--------------
// Sends the signal of right going waves to the output channel of the [`chain`](#chain).
//
// #### Usage
//
// ```
// chain(A : outRightWave : B)
// ```
//
// Where `A` and `B` are bidirectional blocks.
//--------------------------------
outRightWave(x,y,s) = x,y,y+s;
//-------`(pm.)out`--------------
// Sends the signal of right and left going waves to the output channel of the
// [`chain`](#chain).
//
// #### Usage
//
// ```
// chain(A : out : B)
// ```
//
// Where `A` and `B` are bidirectional blocks.
//--------------------------------
out(x,y,s) = x,y,x+y+s;
//-------`(pm.)terminations`--------------
// Creates terminations on both sides of a [`chain`](#chain) without closing
// the inputs and outputs of the bidirectional signals chain. As for
// [`chain`](#chain), this function adds a 1 sample delay to the bidirectional
// signal, both ways. Of course, this function can be nested within a
// [`chain`](#chain).
//
// #### Usage
//
// ```
// terminations(a,b,c)
// with{
// a = *(-1); // left termination
// b = chain(D : E : F); // bidirectional chain of blocks (D, E, F, etc.)
// c = *(-1); // right termination
// };
// ```
//----------------------------------------
terminations(a,b,c) = (_,ro.crossnn(1),_,_ : +,+,_ : b) ~ (a,c : ro.crossnn(1));
//-------`(pm.)lTermination`----------
// Creates a termination on the left side of a [`chain`](#chain) without
// closing the inputs and outputs of the bidirectional signals chain. This
// function adds a 1 sample delay near the termination and can be nested
// within another [`chain`](#chain).
//
// #### Usage
//
// ```
// lTerminations(a,b)
// with{
// a = *(-1); // left termination
// b = chain(D : E : F); // bidirectional chain of blocks (D, E, F, etc.)
// };
// ```
//----------------------------------------
lTermination(a,b) = (ro.crossnn(1),_,_ : _,+,_ : b) ~ a;
//-------`(pm.)rTermination`----------
// Creates a termination on the right side of a [`chain`](#chain) without
// closing the inputs and outputs of the bidirectional signals chain. This
// function adds a 1 sample delay near the termination and can be nested
// within another [`chain`](#chain).
//
// #### Usage
//
// ```
// rTerminations(b,c)
// with{
// b = chain(D : E : F); // bidirectional chain of blocks (D, E, F, etc.)
// c = *(-1); // right termination
// };
// ```
//----------------------------------------
rTermination(b,c) = (_,_,_,_ : +,_,_ : b) ~ (!,c);
//-------`(pm.)closeIns`----------
// Closes the inputs of a bidirectional chain in all directions.
//
// #### Usage
//
// ```
// closeIns : chain(...) : _,_,_
// ```
//----------------------------------------
closeIns = 0,0,0;
//-------`(pm.)closeOuts`----------
// Closes the outputs of a bidirectional chain in all directions except for the
// main signal output (3d output).
//
// #### Usage
//
// ```
// _,_,_ : chain(...) : _
// ```
//----------------------------------------
closeOuts = !,!,_;
//-------`(pm.)endChain`----------
// Closes the inputs and outputs of a bidirectional chain in all directions
// except for the main signal output (3d output).
//
// #### Usage
//
// ```
// endChain(chain(...)) : _
// ```
//----------------------------------------
endChain(b) = closeIns : b : closeOuts;
//==================================Basic Elements========================================
// Basic elements for physical modeling (e.g., waveguides, specific filters,
// etc.).
//========================================================================================
//-------`(pm.)waveguideN`----------
// A series of waveguide functions based on various types of delays (see
// [`fdelay[n]`](#fdelayn)).
//
// #### List of functions
//
// * `waveguideUd`: unit delay waveguide
// * `waveguideFd`: fractional delay waveguide
// * `waveguideFd2`: second order fractional delay waveguide
// * `waveguideFd4`: fourth order fractional delay waveguide
//
// #### Usage
//
// ```
// chain(A : waveguideUd(nMax,n) : B)
// ```
//
// Where:
//
// * `nMax`: the maximum length of the delays in the waveguide
// * `n`: the length of the delay lines in samples.
//----------------------------------
waveguideUd(nMax,n) = par(i,2,de.delay(nMax,n)),_;
waveguideFd(nMax,n) = par(i,2,de.fdelay(nMax,n)),_;
waveguideFd2(nMax,n) = par(i,2,de.fdelay2(nMax,n)),_;
waveguideFd4(nMax,n) = par(i,2,de.fdelay4(nMax,n)),_;
//-------`(pm.)waveguide`----------
// Standard `pm.lib` waveguide (based on [`waveguideFd4`](#waveguiden)).
//
// #### Usage
//
// ```
// chain(A : waveguide(nMax,n) : B)
// ```
//
// Where:
//
// * `nMax`: the maximum length of the delays in the waveguide
// * `n`: the length of the delay lines in samples.
//----------------------------------
waveguide(nMax,n) = waveguideFd4(nMax,n);
//-------`(pm.)bridgeFilter`----------
// Generic two zeros bridge FIR filter (as implemented in the
// [STK](https://ccrma.stanford.edu/software/stk/)) that can be used to
// implement the reflectance violin, guitar, etc. bridges.
//
// #### Usage
//
// ```
// _ : bridge(brightness,absorption) : _
// ```
//
// Where:
//
// * `brightness`: controls the damping of high frequencies (0-1)
// * `absorption`: controls the absorption of the brige and thus the t60 of
// the string plugged to it (0-1) (1 = 20 seconds)
//----------------------------------
// TODO: perhaps, the coefs of this filter should be adapted in function of SR
bridgeFilter(brightness,absorption,x) = rho * (h0 * x' + h1*(x+x''))
with{
freq = 320;
t60 = (1-absorption)*20;
h0 = (1.0 + brightness)/2;
h1 = (1.0 - brightness)/4;
rho = pow(0.001,1.0/(freq*t60));
};
//-------`(pm.)modeFilter`----------
// Resonant bandpass filter that can be used to implement a single resonance
// (mode).
//
// #### Usage
//
// ```
// _ : modeFilter(freq,t60,gain) : _
// ```
//
// Where:
//
// * `freq`: mode frequency
// * `t60`: mode resonance duration (in seconds)
// * `gain`: mode gain (0-1)
//----------------------------------
modeFilter(freq,t60,gain) = fi.tf2(b0,b1,b2,a1,a2)*gain
with{
b0 = 1;
b1 = 0;
b2 = -1;
w = 2*ma.PI*freq/ma.SR;
r = pow(0.001,1/float(t60*ma.SR));
a1 = -2*r*cos(w);
a2 = r^2;
};
//================================String Instruments======================================
// Low and high level string instruments parts. Most of the elements in
// this section can be used in a bidirectional chain.
//========================================================================================
//-------`(pm.)stringSegment`----------
// A string segment without terminations (just a simple waveguide).
//
// #### Usage
//
// ```
// chain(A : stringSegment(maxLength,length) : B)
// ```
//
// Where:
//
// * `maxLength`: the maximum length of the string in meters (should be static)
// * `length`: the length of the string in meters
//----------------------------------
stringSegment(maxLength,length) = waveguide(nMax,n)
with{
nMax = maxLength : l2s;
n = length : l2s/2;
};
//-------`(pm.)openString`----------
// A bidirectional block implementing a basic "generic" string with a
// selectable excitation position. Lowpass filters are built-in and
// allow to simulate the effect of dispersion on the sound and thus
// to change the "stiffness" of the string.
//
// #### Usage
//
// ```
// chain(... : openString(length,stiffness,pluckPosition,excitation) : ...)
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `stiffness`: the stiffness of the string (0-1) (1 for max stiffness)
// * `pluckPosition`: excitation position (0-1) (1 is bottom)
// * `excitation`: the excitation signal
//----------------------------------
openString(length,stiffness,pluckPosition,excitation) = chain(stringSegment(maxStringLength,ntbd) : in(excitation) : dispersionFilters : stringSegment(maxStringLength,btbd))
with{
dispersionFilters = par(i,2,si.smooth(stiffness)),_; // one pole filters
maxStringLength = maxLength;
ntbd = length*pluckPosition; // length of the upper portion of the string
btbd = length*(1-pluckPosition); // length of the lower portion of the string
};
//-------`(pm.)nylonString`----------
// A bidirectional block implementing a basic nylon string with selectable
// excitation position. This element is based on [`openString`](#openstring)
// and has a fix stiffness corresponding to that of a nylon string.
//
// #### Usage
//
// ```
// chain(... : nylonString(length,pluckPosition,excitation) : ...)
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `pluckPosition`: excitation position (0-1) (1 is bottom)
// * `excitation`: the excitation signal
//----------------------------------
nylonString(length,pluckPosition,excitation) =
openString(length,stiffness,pluckPosition,excitation)
with{
stiffness = 0.4; // empirically set but it sounds good ;)
};
//-------`(pm.)steelString`----------
// A bidirectional block implementing a basic steel string with selectable
// excitation position. This element is based on [`openString`](#openstring)
// and has a fix stiffness corresponding to that of a steel string.
//
// #### Usage
//
// ```
// chain(... : steelString(length,pluckPosition,excitation) : ...)
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `pluckPosition`: excitation position (0-1) (1 is bottom)
// * `excitation`: the excitation signal
//----------------------------------
steelString(length,pluckPosition,excitation) =
openString(length,stiffness,pluckPosition,excitation)
with{
stiffness = 0.05; // empirically set but it sounds good ;)
// in fact, we could almost get rid of the filters in that case,
// but I think it's good to keep them for consistency
};
//-------`(pm.)openStringPick`----------
// A bidirectional block implementing a "generic" string with selectable
// excitation position. It also has a built-in pickup whose position is the
// same as the excitation position. Thus, moving the excitation position
// will also move the pickup.
//
// #### Usage
//
// ```
// chain(... : openStringPick(length,stiffness,pluckPosition,excitation) : ...)
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `stiffness`: the stiffness of the string (0-1) (1 for max stiffness)
// * `pluckPosition`: excitation position (0-1) (1 is bottom)
// * `excitation`: the excitation signal
//----------------------------------
openStringPick(length,stiffness,pluckPosition,excitation) = strChain
with{
dispersionFilters = par(i,2,si.smooth(stiffness)),_;
maxStringLength = maxLength;
nti = length*pluckPosition; // length of the upper portion of the string
itb = length*(1-pluckPosition); // length of the lower portion of the string
strChain = chain(stringSegment(maxStringLength,nti) : in(excitation) : out :
dispersionFilters : stringSegment(maxStringLength,itb));
};
//-------`(pm.)openStringPickUp`----------
// A bidirectional block implementing a "generic" string with selectable
// excitation position and stiffness. It also has a built-in pickup whose
// position can be independenly selected. The only constraint is that the
// pickup has to be placed after the excitation position.
//
// #### Usage
//
// ```
// chain(... : openStringPickUp(length,stiffness,pluckPosition,excitation) : ...)
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `stiffness`: the stiffness of the string (0-1) (1 for max stiffness)
// * `pluckPosition`: pluck position between the top of the string and the
// pickup (0-1) (1 for same as pickup position)
// * `pickupPosition`: position of the pickup on the string (0-1) (1 is bottom)
// * `excitation`: the excitation signal
//----------------------------------
openStringPickUp(length,stiffness,pluckPosition,pickupPosition,excitation) = strChain
with{
dispersionFilters = par(i,2,si.smooth(stiffness)),_;
maxStringLength = maxLength;
nti = length*pluckPosition; // top to excitation length
nto = nti*pickupPosition; // nuts to pickup length
oti = nti*(1-pickupPosition); // pickup to excitation length
itb = length*(1-pluckPosition); // pickup to bottom length
strChain = chain(stringSegment(maxStringLength,nto) : out :
stringSegment(maxStringLength,oti) : in(excitation) : dispersionFilters :
stringSegment(maxStringLength,itb));
};
//-------`(pm.)openStringPickDown`----------
// A bidirectional block implementing a "generic" string with selectable
// excitation position and stiffness. It also has a built-in pickup whose
// position can be independenly selected. The only constraint is that the
// pickup has to be placed before the excitation position.
//
// #### Usage
//
// ```
// chain(... : openStringPickDown(length,stiffness,pluckPosition,excitation) : ...)
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `stiffness`: the stiffness of the string (0-1) (1 for max stiffness)
// * `pluckPosition`: pluck position on the string (0-1) (1 is bottom)
// * `pickupPosition`: position of the pickup between the top of the string
// and the excitation position (0-1) (1 is excitation position)
// * `excitation`: the excitation signal
//----------------------------------
openStringPickDown(length,stiffness,pluckPosition,pickupPosition,excitation) =
strChain
with{
dispersionFilters = par(i,2,si.smooth(stiffness)),_;
maxStringLength = maxLength;
nto = length*pickupPosition; // top to pickup length
nti = nto*pluckPosition; // top to excitation length
ito = nto*(1-pluckPosition); // excitation to pickup length
otb = length*(1-pickupPosition); // pickup to bottom length
strChain = chain(stringSegment(maxStringLength,nti) : in(excitation) :
stringSegment(maxStringLength,ito) : out : dispersionFilters :
stringSegment(maxStringLength,otb));
};
// TODO: eventually, we'd want to implement a generic function here that
// automatically switches the position of elements in the algorithm
// depending on the position of the pick. Even though this is currently
// possible, it will pose optimization issues (we'd want the new mute
// feature of Faust to be generalized in order to do that)
//-------`(pm.)ksReflexionFilter`----------
// The "typical" one-zero Karplus-strong feedforward reflexion filter. This
// filter will be typically used in a termination (see below).
//
// #### Usage
//
// ```
// terminations(_,chain(...),ksReflexionFilter)
// ```
//----------------------------------
ksReflexionFilter = _ <: (_+_')/2;
//-------`(pm.)rStringRigidTermination`----------
// Bidirectional block implementing a right rigid string termination (no damping,
// just phase inversion).
//
// #### Usage
//
// ```
// chain(rStringRigidTermination : stringSegment : ...)
// ```
//----------------------------------
rStringRigidTermination = rTermination(basicBlock,*(-1));
//-------`(pm.)lStringRigidTermination`----------
// Bidirectional block implementing a left rigid string termination (no damping,
// just phase inversion).
//
// #### Usage
//
// ```
// chain(... : stringSegment : lStringRigidTermination)
// ```
//----------------------------------
lStringRigidTermination = lTermination(*(-1),basicBlock);
//-------`(pm.)elecGuitarBridge`----------
// Bidirectional block implementing a simple electric guitar bridge. This
// block is based on [`bridgeFilter`](#bridgeFilter). The bridge doesn't
// implement transmittance since it is not meant to be connected to a
// body (unlike acoustic guitar). It also partially sets the resonance
// duration of the string with the nuts used on the other side.
//
// #### Usage
//
// ```
// chain(... : stringSegment : elecGuitarBridge)
// ```
//----------------------------------
elecGuitarBridge = rTermination(basicBlock,-bridgeFilter(0.8,0.6));
//-------`(pm.)elecGuitarNuts`----------
// Bidirectional block implementing a simple electric guitar nuts. This
// block is based on [`bridgeFilter`](#bridgeFilter) and does essentially
// the same thing as [`elecGuitarBridge`](#elecguitarbridge), but on the
// other side of the chain. It also partially sets the resonance duration of
// the string with the bridge used on the other side.
//
// #### Usage
//
// ```
// chain(elecGuitarNuts : stringSegment : ...)
// ```
//----------------------------------
elecGuitarNuts = lTermination(-bridgeFilter(0.8,0.6),basicBlock);
//-------`(pm.)guitarBridge`----------
// Bidirectional block implementing a simple acoustic guitar bridge. This
// bridge damps more hight frequencies than
// [`elecGuitarBridge`](#elecguitarbridge) and implements a transmittance
// filter. It also partially sets the resonance duration of the string with
// the nuts used on the other side.
//
// #### Usage
//
// ```
// chain(... : stringSegment : guitarBridge)
// ```
//----------------------------------
guitarBridge = rTermination(basicBlock,reflectance) : _,transmittance,_
with{
reflectance = -bridgeFilter(0.4,0.5);
transmittance = _; // TODO
};
//-------`(pm.)guitarNuts`----------
// Bidirectional block implementing a simple acoustic guitar nuts. This
// nuts damps more hight frequencies than
// [`elecGuitarNuts`](#elecguitarnuts) and implements a transmittance
// filter. It also partially sets the resonance duration of the string with
// the bridge used on the other side.
//
// #### Usage
//
// ```
// chain(guitarNuts : stringSegment : ...)
// ```
//----------------------------------
guitarNuts = lTermination(-bridgeFilter(0.4,0.5),basicBlock);
//-------`(pm.)idealString`----------
// An "ideal" string with rigid terminations and where the plucking position
// and the pick-up position are the same. Since terminations are rigid, this
// string will ring forever.
//
// #### Usage
//
// ```
// 1-1' : idealString(length,reflexion,xPosition,excitation)
// ```
//
// With:
// * `length`: the length of the string in meters
// * `pluckPosition`: the plucking position (0.001-0.999)
// * `excitation`: the input signal for the excitation.
//----------------------------------------------------------
idealString(length,pluckPosition,excitation) = wg
with{
maxStringLength = maxLength;
lengthTuning = 0.08; // tuned "by hand"
tunedLength = length-lengthTuning;
nUp = tunedLength*pluckPosition; // upper string segment length
nDown = tunedLength*(1-pluckPosition); // lower string segment length
wg = chain(lStringRigidTermination : stringSegment(maxStringLength,nUp) :
in(excitation) : out : stringSegment(maxStringLength,nDown) :
rStringRigidTermination); // waveguide chain
};
//-------`(pm.)ks`----------
// A Karplus-Strong string (in that case, the string is implemented as a
// one dimension waveguide).
//
// #### Usage
//
// ```
// ks(length,damping,excitation) : _
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `damping`: string damping (0-1)
// * `excitation`: excitation signal
//----------------------------------
ks(length,damping,excitation) = endChain(ksChain)
with{
maxStringLength = maxLength;
lengthTuning = 0.05; // tuned "by hand"
tunedLength = length-lengthTuning;
refCoef = (1-damping)*0.2+0.8;
refFilter = ksReflexionFilter*refCoef;
ksChain = terminations(_,chain(in(excitation) :
stringSegment(maxStringLength,tunedLength) : out),refFilter);
};
//-------`(pm.)ks_ui_MIDI`----------
// Ready-to-use, MIDI-enabled Karplus-Strong string with buil-in UI.
//
// #### Usage
//
// ```
// ks_ui_MIDI : _
// ```
//----------------------------------
ks_ui_MIDI = gate : impulseExcitation*gain : ks( (freq : f2l), damping )
with{
f = hslider("v:karplus/h:[0]params/[0]freq[style:knob]",440,50,1000,0.01);
bend = ba.semi2ratio(hslider("v:karplus/h:[0]params/[1]bend[style:knob][hidden:1][midi:pitchwheel]"
,0,-2,2,0.01)) : si.polySmooth(gate,0.999,1);
gain = hslider("v:karplus/h:[0]params/[2]gain[style:knob]",0.8,0,1,0.01);
s = hslider("v:karplus/h:[0]params/[3]sustain[hidden:1][midi:ctrl 64][style:knob]"
,0,0,1,1);
damping = hslider("v:karplus/h:[0]params/[1]damping[midi:ctrl 1][style:knob]"
,0.01,0,1,0.01) : si.smoo;
t = button("v:karplus/[1]gate");
gate = t+s : min(1);
freq = f*bend;
};
//-------`(pm.)elecGuitarModel`----------
// A simple electric guitar model (without audio effects, of course) with
// selectable pluck position.
// This model implements a single string. Additional strings should be created
// by making a polyphonic application out of this function. Pitch is changed by
// changing the length of the string and not through a finger model.
//
// #### Usage
//
// ```
// elecGuitarModel(length,pluckPosition,mute,excitation) : _
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `pluckPosition`: pluck position (0-1) (1 is on the bridge)
// * `mute`: mute coefficient (1 for no mute and 0 for instant mute)
// * `excitation`: excitation signal
//----------------------------------
elecGuitarModel(length,pluckPosition,mute,excitation) = endChain(egChain)
with{
maxStringLength = maxLength;
lengthTuning = 0.11; // tuned "by hand"
stringL = length-lengthTuning;
muteBlock = *(mute),*(mute),_;
egChain = chain(
elecGuitarNuts :
openStringPick(stringL,0.05,pluckPosition,excitation) :
muteBlock :
elecGuitarBridge);
};
//-------`(pm.)elecGuitar`----------
// A simple electric guitar model with steel strings (based on
// [`elecGuitarModel`](#elecguitarmodel)) implementing an excitation
// model.
// This model implements a single string. Additional strings should be created
// by making a polyphonic application out of this function.
//
// #### Usage
//
// ```
// elecGuitar(length,pluckPosition,trigger) : _
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `pluckPosition`: pluck position (0-1) (1 is on the bridge)
// * `mute`: mute coefficient (1 for no mute and 0 for instant mute)
// * `gain`: gain of the pluck (0-1)
// * `trigger`: trigger signal (1 for on, 0 for off)
//----------------------------------
elecGuitar(stringLength,pluckPosition,mute,gain,trigger) =
pluckString(stringLength,1,1,1,gain,trigger) :
elecGuitarModel(stringLength,pluckPosition,mute);
//-------`(pm.)elecGuitar_ui_MIDI`----------
// Ready-to-use MIDI-enabled electric guitar physical model with built-in UI.
//
// #### Usage
//
// ```
// elecGuitar_ui_MIDI : _
// ```
//----------------------------------
elecGuitar_ui_MIDI = elecGuitar(stringLength,pluckPosition,1,gain,gate)*outGain
with{
f = hslider("v:elecGuitar/h:[0]midi/[0]freq[style:knob]",440,50,1000,0.01);
bend = ba.semi2ratio(hslider("v:elecGuitar/h:[0]midi/[1]bend[hidden:1][midi:pitchwheel][style:knob]"
,0,-2,2,0.01)) : si.polySmooth(gate,0.999,1);
gain = hslider("v:elecGuitar/h:[0]midi/[2]gain[style:knob]",0.8,0,1,0.01);
s = hslider("v:elecGuitar/h:[0]midi/[3]sustain[hidden:1]
[midi:ctrl 64][style:knob]",0,0,1,1);
pluckPosition = hslider("v:elecGuitar/[1]pluckPosition[midi:ctrl 1]",0.8,0,1,0.01) : si.smoo;
outGain = hslider("v:elecGuitar/[2]outGain",0.5,0,1,0.01);
t = button("v:elecGuitar/[3]gate");
gate = t+s : min(1);
freq = f*bend;
stringLength = freq : f2l;
};
//-------`(pm.)guitarBody`----------
// WARNING: not implemented yet!
// Bidirectional block implementing a simple acoustic guitar body.
//
// #### Usage
//
// ```
// chain(... : guitarBody)
// ```
//----------------------------------
// TODO: not implemented yet
guitarBody = reflectance,transmittance,_
with{
transmittance = _;
reflectance = _;
};
//-------`(pm.)guitarModel`----------
// A simple acoustic guitar model with steel strings and selectable excitation
// position. This model implements a single string. Additional strings should be created
// by making a polyphonic application out of this function. Pitch is changed by
// changing the length of the string and not through a finger model.
// WARNING: this function doesn't currently implement a body (just strings and
// bridge).
//
// #### Usage
//
// ```
// guitarModel(length,pluckPosition,excitation) : _
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `pluckPosition`: pluck position (0-1) (1 is on the bridge)
// * `excitation`: excitation signal
//----------------------------------
guitarModel(length,pluckPosition,excitation) = endChain(egChain)
with{
maxStringLength = maxLength;
lengthTuning = 0.1; // tuned "by hand"
stringL = length-lengthTuning;
egChain = chain(guitarNuts : steelString(stringL,pluckPosition,excitation) :
guitarBridge : guitarBody : out);
};
//-------`(pm.)guitar`----------
// A simple acoustic guitar model with steel strings (based on
// [`guitarModel`](#guitarmodel)) implementing an excitation model.
// This model implements a single string. Additional strings should be created
// by making a polyphonic application out of this function.
//
// #### Usage
//
// ```
// guitar(length,pluckPosition,trigger) : _
// ```
//
// Where:
//
// * `length`: the length of the string in meters
// * `pluckPosition`: pluck position (0-1) (1 is on the bridge)