-
Notifications
You must be signed in to change notification settings - Fork 88
/
machine_limits.c
809 lines (662 loc) · 32.5 KB
/
machine_limits.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
machine_limits.c - code pertaining to limit-switches and performing the homing cycle
Part of grblHAL
Copyright (c) 2017-2024 Terje Io
Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "hal.h"
#include "nuts_bolts.h"
#include "protocol.h"
#include "motion_control.h"
#include "machine_limits.h"
#include "tool_change.h"
#include "state_machine.h"
#ifdef KINEMATICS_API
#include "kinematics.h"
#endif
#include "config.h"
static coord_data_t homing_pulloff = {0};
// Merge (bitwise or) all limit switch inputs.
ISR_CODE axes_signals_t ISR_FUNC(limit_signals_merge)(limit_signals_t signals)
{
axes_signals_t state;
state.mask = signals.min.mask | signals.min2.mask | signals.max.mask | signals.max2.mask;
return state;
}
// Merge (bitwise or) home switch inputs (typically acquired from limits.min and limits.min2).
ISR_CODE static axes_signals_t ISR_FUNC(homing_signals_select)(home_signals_t signals, axes_signals_t auto_square, squaring_mode_t mode)
{
axes_signals_t state;
switch(mode) {
case SquaringMode_A:
signals.a.mask &= ~auto_square.mask;
break;
case SquaringMode_B:
signals.b.mask &= ~auto_square.mask;
break;
default:
break;
}
state.mask = signals.a.mask | signals.b.mask;
return state;
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
// bouncing pin because the microcontroller does not retain any state information when
// detecting a pin change. If we poll the pins in the ISR, you can miss the correct reading if the
// switch is bouncing.
ISR_CODE void ISR_FUNC(limit_interrupt_handler)(limit_signals_t state) // DEFAULT: Limit pin change interrupt process.
{
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
// When in the alarm state, grblHAL should have been reset or will force a reset, so any pending
// moves in the planner and stream input buffers are all cleared and newly sent blocks will be
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
#if N_AXIS > 3
if((limit_signals_merge(state).value & sys.hard_limits.mask) == 0)
return;
#endif
memcpy(&sys.last_event.limits, &state, sizeof(limit_signals_t));
if (!(state_get() & (STATE_ALARM|STATE_ESTOP)) && !sys.rt_exec_alarm) {
#if HARD_LIMIT_FORCE_STATE_CHECK
// Check limit pin state.
if (limit_signals_merge(state).value) {
mc_reset(); // Initiate system kill.
system_set_exec_alarm(Alarm_HardLimit); // Indicate hard limit critical event
}
#else
mc_reset(); // Initiate system kill.
system_set_exec_alarm(Alarm_HardLimit); // Indicate hard limit critical event
#endif
}
}
// Establish work envelope for homed axes, used by soft limits and jog limits handling.
// When hard limits are enabled pulloff distance is subtracted to avoid triggering limit switches.
void limits_set_work_envelope (void)
{
uint_fast8_t idx = N_AXIS;
do {
if(sys.homed.mask & bit(--idx)) {
float pulloff = settings.limits.flags.hard_enabled && bit_istrue(sys.homing.mask, bit(idx)) ? homing_pulloff.values[idx] : 0.0f;
if(settings.homing.flags.force_set_origin) {
if(bit_isfalse(settings.homing.dir_mask.value, bit(idx))) {
sys.work_envelope.min.values[idx] = settings.axis[idx].max_travel + pulloff;
sys.work_envelope.max.values[idx] = 0.0f;
} else {
sys.work_envelope.min.values[idx] = 0.0f;
sys.work_envelope.max.values[idx] = - (settings.axis[idx].max_travel + pulloff);
}
} else {
sys.work_envelope.min.values[idx] = settings.axis[idx].max_travel + pulloff;
sys.work_envelope.max.values[idx] = - pulloff;
}
} else
sys.work_envelope.min.values[idx] = sys.work_envelope.max.values[idx] = 0.0f;
} while(idx);
}
#ifndef KINEMATICS_API
// Set machine positions for homed limit switches. Don't update non-homed axes.
// NOTE: settings.max_travel[] is stored as a negative value.
void limits_set_machine_positions (axes_signals_t cycle, bool add_pulloff)
{
uint_fast8_t idx = N_AXIS;
if(settings.homing.flags.force_set_origin) {
do {
if(cycle.mask & bit(--idx)) {
sys.position[idx] = 0;
sys.home_position[idx] = 0.0f;
}
} while(idx);
} else do {
if(cycle.mask & bit(--idx)) {
sys.home_position[idx] = bit_istrue(settings.homing.dir_mask.value, bit(idx))
? settings.axis[idx].max_travel + (add_pulloff ? homing_pulloff.values[idx] : -0.0f)
: -(add_pulloff ? homing_pulloff.values[idx] : -0.0f);
sys.position[idx] = lroundf(sys.home_position[idx] * settings.axis[idx].steps_per_mm);
}
} while(idx);
}
#endif
// Set, get homing pulloff
coord_data_t *limits_homing_pulloff (coord_data_t *distance)
{
if(distance)
memcpy(&homing_pulloff, distance, sizeof(coord_data_t));
return &homing_pulloff;
}
// Pulls off axes from asserted homing switches before homing starts.
// For now only for auto squared axes.
static bool limits_pull_off (axes_signals_t axis, coord_data_t *distance, float scaling)
{
uint_fast8_t n_axis = 0, idx = N_AXIS;
coord_data_t target = {0};
plan_line_data_t plan_data;
plan_data_init(&plan_data);
plan_data.condition.system_motion = On;
plan_data.condition.no_feed_override = On;
plan_data.line_number = DEFAULT_HOMING_CYCLE_LINE_NUMBER;
system_convert_array_steps_to_mpos(target.values, sys.position);
do {
idx--;
if(bit_istrue(axis.mask, bit(idx))) {
n_axis++;
if(bit_istrue(settings.homing.dir_mask.value, bit(idx)))
target.values[idx] += distance->values[idx] * scaling;
else
target.values[idx] -= distance->values[idx] * scaling;
}
} while(idx);
plan_data.feed_rate = settings.homing.seek_rate * sqrtf(n_axis); // Adjust so individual axes all move at pull-off rate.
plan_data.condition.coolant = gc_state.modal.coolant;
#ifdef KINEMATICS_API
coord_data_t k_target;
plan_buffer_line(kinematics.transform_from_cartesian(k_target.values, target.values), &plan_data); // Bypass mc_line(). Directly plan homing motion.;
#else
plan_buffer_line(target.values, &plan_data); // Bypass mc_line(). Directly plan homing motion.
#endif
sys.step_control.flags = 0; // Clear existing flags and
sys.step_control.execute_sys_motion = On; // set to execute homing motion.
sys.homing_axis_lock.mask = axis.mask;
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
st_wake_up(); // Initiate motion.
while(true) {
st_prep_buffer(); // Check and prep segment buffer.
// Exit routines: No time to run protocol_execute_realtime() in this loop.
if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_COMPLETE)) {
uint_fast16_t rt_exec = sys.rt_exec_state;
// Homing failure condition: Reset issued during cycle.
if (rt_exec & EXEC_RESET)
system_set_exec_alarm(Alarm_HomingFailReset);
// Homing failure condition: Safety door was opened.
if (rt_exec & EXEC_SAFETY_DOOR)
system_set_exec_alarm(Alarm_HomingFailDoor);
// Homing failure condition: Homing switch(es) still engaged after pull-off motion
if (homing_signals_select(hal.homing.get_state(), (axes_signals_t){0}, SquaringMode_Both).mask & axis.mask)
system_set_exec_alarm(Alarm_FailPulloff);
if (sys.rt_exec_alarm) {
mc_reset(); // Stop motors, if they are running.
protocol_execute_realtime();
return false;
} else {
// Pull-off motion complete. Disable CYCLE_STOP from executing.
system_clear_exec_state_flag(EXEC_CYCLE_COMPLETE);
break;
}
}
grbl.on_execute_realtime(STATE_HOMING);
}
st_reset(); // Immediately force kill steppers and reset step segment buffer.
sys.step_control.flags = 0; // Return step control to normal operation.
return true; // Note: failure is returned above if move fails.
}
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after
// completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate
// the trigger point of the limit switches. The rapid stops are handled by a system level axis lock
// mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically
// circumvent the processes for executing motions in normal operation.
// NOTE: Only the abort realtime command can interrupt this process.
static bool homing_cycle (axes_signals_t cycle, axes_signals_t auto_square)
{
if (ABORTED) // Block if system reset has been issued.
return false;
int32_t initial_trigger_position = 0, autosquare_fail_distance = 0;
uint_fast8_t n_cycle = (2 * settings.homing.locate_cycles + 1);
uint_fast8_t step_pin[N_AXIS], n_active_axis, dual_motor_axis = 0;
bool autosquare_check = false;
float max_travel = 0.0f, homing_rate;
homing_mode_t mode = HomingMode_Seek;
axes_signals_t axislock, homing_state;
home_signals_t signals_state;
squaring_mode_t squaring_mode = SquaringMode_Both;
coord_data_t distance, target;
plan_line_data_t plan_data;
rt_exec_t rt_exec, rt_exec_states = EXEC_SAFETY_DOOR|EXEC_RESET|EXEC_CYCLE_COMPLETE;
// Initialize plan data struct for homing motion.
plan_data_init(&plan_data);
plan_data.condition.system_motion = On;
plan_data.condition.no_feed_override = On;
plan_data.line_number = DEFAULT_HOMING_CYCLE_LINE_NUMBER;
plan_data.condition.coolant = gc_state.modal.coolant;
uint_fast8_t idx = N_AXIS;
do {
idx--;
// Initialize step pin masks
#ifdef KINEMATICS_API
step_pin[idx] = kinematics.limits_get_axis_mask(idx);
#else
step_pin[idx] = bit(idx);
#endif
// Set target based on max_travel setting. Ensure homing switches engaged with search scalar.
// NOTE: settings.axis[].max_travel is stored as a negative value.
if(bit_istrue(cycle.mask, bit(idx))) {
#if N_AXIS > 3
if(bit_istrue(settings.steppers.is_rotary.mask, bit(idx)))
distance.values[idx] = (settings.axis[idx].max_travel < -0.0f ? settings.axis[idx].max_travel : -360.0f) * (-HOMING_AXIS_SEARCH_SCALAR);
else
#endif
distance.values[idx] = settings.axis[idx].max_travel * (-HOMING_AXIS_SEARCH_SCALAR);
max_travel = max(max_travel, distance.values[idx]);
if(bit_istrue(auto_square.mask, bit(idx)))
dual_motor_axis = idx;
}
} while(idx);
if(max_travel == 0.0f)
return true;
if((homing_rate = hal.homing.get_feedrate(cycle, HomingMode_Seek)) == 0.0f)
return false;
if(auto_square.mask) {
float fail_distance = (-settings.homing.dual_axis.fail_length_percent / 100.0f) * settings.axis[dual_motor_axis].max_travel;
fail_distance = min(fail_distance, settings.homing.dual_axis.fail_distance_max);
fail_distance = max(fail_distance, settings.homing.dual_axis.fail_distance_min);
autosquare_fail_distance = truncf(fail_distance * settings.axis[dual_motor_axis].steps_per_mm);
}
if(settings.status_report.when_homing)
rt_exec_states |= EXEC_STATUS_REPORT;
// Set search mode with approach at seek rate to quickly engage the specified cycle.mask limit switches.
do {
// Initialize and declare variables needed for homing routine.
system_convert_array_steps_to_mpos(target.values, sys.position);
axislock = (axes_signals_t){0};
n_active_axis = 0;
idx = N_AXIS;
do {
// Set target location for active axes and setup computation for homing rate.
if (bit_istrue(cycle.mask, bit(--idx))) {
n_active_axis++;
#ifdef KINEMATICS_API
kinematics.limits_set_target_pos(idx);
#else
sys.position[idx] = 0;
#endif
// Set target direction based on cycle mask and homing cycle approach state.
if (bit_istrue(settings.homing.dir_mask.value, bit(idx)))
target.values[idx] = mode == HomingMode_Pulloff ? distance.values[idx] : - distance.values[idx];
else
target.values[idx] = mode == HomingMode_Pulloff ? - distance.values[idx] : distance.values[idx];
// Apply axislock to the step port pins active in this cycle.
axislock.mask |= step_pin[idx];
}
} while(idx);
#ifdef KINEMATICS_API
if(kinematics.homing_cycle_get_feedrate)
homing_rate = kinematics.homing_cycle_get_feedrate(cycle, homing_rate, mode);
#endif
if(grbl.on_homing_rate_set)
grbl.on_homing_rate_set(cycle, homing_rate, mode);
homing_rate *= sqrtf(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
plan_data.feed_rate = homing_rate; // Set current homing rate.
sys.homing_axis_lock.mask = axislock.mask;
#ifdef KINEMATICS_API
coord_data_t k_target;
plan_buffer_line(kinematics.transform_from_cartesian(k_target.values, target.values), &plan_data); // Bypass mc_line(). Directly plan homing motion.;
#else
plan_buffer_line(target.values, &plan_data); // Bypass mc_line(). Directly plan homing motion.
#endif
sys.step_control.flags = 0;
sys.step_control.execute_sys_motion = On; // Set to execute homing motion and clear existing flags.
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
st_wake_up(); // Initiate motion
do {
if (mode != HomingMode_Pulloff) {
// Check homing switches state. Lock out cycle axes when they change.
homing_state = homing_signals_select(signals_state = hal.homing.get_state(), auto_square, squaring_mode);
// Auto squaring check
if((homing_state.mask & auto_square.mask) && squaring_mode == SquaringMode_Both) {
if((autosquare_check = (signals_state.a.mask & auto_square.mask) != (signals_state.b.mask & auto_square.mask))) {
initial_trigger_position = sys.position[dual_motor_axis];
homing_state.mask &= ~auto_square.mask;
squaring_mode = (signals_state.a.mask & auto_square.mask) ? SquaringMode_A : SquaringMode_B;
hal.stepper.disable_motors(auto_square, squaring_mode);
}
}
idx = N_AXIS;
do {
idx--;
if ((axislock.mask & step_pin[idx]) && (homing_state.mask & bit(idx))) {
#ifdef KINEMATICS_API
axislock.mask &= ~kinematics.limits_get_axis_mask(idx);
#else
axislock.mask &= ~bit(idx);
#endif
if(idx == dual_motor_axis)
autosquare_check = false;
}
} while(idx);
sys.homing_axis_lock.mask = axislock.mask;
if (autosquare_check && abs(initial_trigger_position - sys.position[dual_motor_axis]) > autosquare_fail_distance) {
system_set_exec_alarm(Alarm_HomingFailAutoSquaringApproach);
mc_reset();
protocol_execute_realtime();
return false;
}
}
st_prep_buffer(); // Check and prep segment buffer.
// Exit routines: No time to run protocol_execute_realtime() in this loop.
if((rt_exec = (sys.rt_exec_state & rt_exec_states))) {
if(rt_exec == EXEC_STATUS_REPORT) {
system_clear_exec_state_flag(EXEC_STATUS_REPORT);
report_realtime_status();
} else {
// Homing failure condition: Reset issued during cycle.
if (rt_exec & EXEC_RESET)
system_set_exec_alarm(Alarm_HomingFailReset);
// Homing failure condition: Safety door was opened.
if (rt_exec & EXEC_SAFETY_DOOR)
system_set_exec_alarm(Alarm_HomingFailDoor);
hal.delay_ms(2, NULL);
// Homing failure condition: Homing switch(es) still engaged after pull-off motion
if (mode == HomingMode_Pulloff && (homing_signals_select(hal.homing.get_state(), (axes_signals_t){0}, SquaringMode_Both).mask & cycle.mask))
system_set_exec_alarm(Alarm_FailPulloff);
// Homing failure condition: Limit switch not found during approach.
if (mode != HomingMode_Pulloff && (rt_exec & EXEC_CYCLE_COMPLETE))
system_set_exec_alarm(Alarm_HomingFailApproach);
if (sys.rt_exec_alarm) {
mc_reset(); // Stop motors, if they are running.
protocol_execute_realtime();
return false;
} else {
// Pull-off motion complete. Disable CYCLE_STOP from executing.
system_clear_exec_state_flag(EXEC_CYCLE_COMPLETE);
break;
}
}
}
grbl.on_execute_realtime(STATE_HOMING);
} while (axislock.mask & AXES_BITMASK);
st_reset(); // Immediately force kill steppers and reset step segment buffer.
hal.delay_ms(settings.homing.debounce_delay, NULL); // Delay to allow transient dynamics to dissipate.
// Reverse direction and reset homing rate for cycle(s).
mode = mode == HomingMode_Pulloff ? HomingMode_Locate : HomingMode_Pulloff;
homing_rate = hal.homing.get_feedrate(cycle, mode);
// After first cycle, homing enters locating phase. Shorten search to pull-off distance.
idx = N_AXIS;
do {
// Only one initial pass for auto squared axis when both motors are active
//if(mode == SquaringMode_Both && auto_square.mask)
// cycle.mask &= ~auto_square.mask;
if(bit_istrue(cycle.mask, bit(--idx)))
distance.values[idx] = homing_pulloff.values[idx] * (mode == HomingMode_Locate ? HOMING_AXIS_LOCATE_SCALAR : 1.0f);
} while(idx);
if(auto_square.mask) {
autosquare_check = false;
squaring_mode = SquaringMode_Both;
hal.stepper.disable_motors((axes_signals_t){0}, SquaringMode_Both);
}
} while (homing_rate > 0.0f && cycle.mask && n_cycle-- > 0);
// Pull off B motor to compensate for switch inaccuracy when configured.
if(auto_square.mask && settings.axis[dual_motor_axis].dual_axis_offset != 0.0f) {
hal.stepper.disable_motors(auto_square, settings.axis[dual_motor_axis].dual_axis_offset < 0.0f ? SquaringMode_B : SquaringMode_A);
distance.values[dual_motor_axis] = fabs(settings.axis[dual_motor_axis].dual_axis_offset);
if(!limits_pull_off(auto_square, &distance, 1.0f))
return false;
hal.stepper.disable_motors((axes_signals_t){0}, SquaringMode_Both);
}
// The active cycle axes should now be homed and machine limits have been located. By
// default, grblHAL defines machine space as all negative, as do most CNCs. Since limit switches
// can be on either side of an axes, check and set axes machine zero appropriately. Also,
// set up pull-off maneuver from axes limit switches that have been homed. This provides
// some initial clearance off the switches and should also help prevent them from falsely
// triggering when hard limits are enabled or when more than one axes shares a limit pin.
#ifdef KINEMATICS_API
kinematics.limits_set_machine_positions(cycle);
#else
limits_set_machine_positions(cycle, true);
#endif
#if ENABLE_BACKLASH_COMPENSATION
mc_backlash_init(cycle);
#endif
sys.step_control.flags = 0; // Return step control to normal operation.
sys.homed.mask |= cycle.mask;
return true;
}
// Perform homing cycle(s) according to configuration.
// NOTE: only one auto squared axis can be homed at a time.
status_code_t limits_go_home (axes_signals_t cycle)
{
axes_signals_t auto_square = {0}, auto_squared = {0};
hal.limits.enable(settings.limits.flags.hard_enabled, cycle); // Disable hard limits pin change register for cycle duration
if(hal.stepper.get_ganged)
auto_squared = hal.stepper.get_ganged(true);
auto_squared.mask &= cycle.mask;
if(auto_squared.mask) {
if(!hal.stepper.disable_motors)
return Status_IllegalHomingConfiguration; // Bad driver! - should not happen.
auto_square.x = On;
while(!(auto_squared.mask & auto_square.mask))
auto_square.mask <<= 1;
if(auto_squared.mask != auto_square.mask)
return Status_IllegalHomingConfiguration; // Attempt at squaring more than one auto squared axis at the same time.
if((auto_squared.mask & homing_signals_select(hal.homing.get_state(), (axes_signals_t){0}, SquaringMode_Both).mask) && !limits_pull_off(auto_square, &homing_pulloff, HOMING_AXIS_LOCATE_SCALAR))
return Status_LimitsEngaged; // Auto squaring with limit switch asserted is not allowed.
}
return grbl.home_machine(cycle, auto_square) ? Status_OK : Status_Unhandled;
}
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
// the workspace volume is in all negative space, and the system is in normal operation.
// NOTE: Also used by jogging to block travel outside soft-limit volume.
void limits_soft_check (float *target, planner_cond_t condition)
{
#ifdef KINEMATICS_API
if(condition.target_validated ? !condition.target_valid : !grbl.check_travel_limits(target, sys.soft_limits, false)) {
#else
if(condition.target_validated ? !condition.target_valid : !grbl.check_travel_limits(target, sys.soft_limits, true)) {
#endif
sys.flags.soft_limit = On;
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
// workspace volume so just come to a controlled stop so position is not lost. When complete
// enter alarm mode.
if(state_get() == STATE_CYCLE) {
system_set_exec_state_flag(EXEC_FEED_HOLD);
do {
if(!protocol_execute_realtime())
return; // aborted!
} while(state_get() != STATE_IDLE);
}
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
system_set_exec_alarm(Alarm_SoftLimit); // Indicate soft limit critical event
protocol_execute_realtime(); // Execute to enter critical event loop and system abort
}
}
// Set axes to be homed from settings.
void limits_set_homing_axes (void)
{
uint_fast8_t idx = N_AXIS;
sys.homing.mask = 0;
do {
sys.homing.mask |= settings.homing.cycle[--idx].mask;
} while(idx);
sys.homed.mask &= sys.homing.mask;
}
// Check if homing is required.
bool limits_homing_required (void)
{
return settings.homing.flags.enabled && settings.homing.flags.init_lock &&
(sys.cold_start || !settings.homing.flags.override_locks) &&
sys.homing.mask && (sys.homing.mask & sys.homed.mask) != sys.homing.mask;
}
static float get_homing_rate (axes_signals_t cycle, homing_mode_t mode)
{
return mode == HomingMode_Locate ? settings.homing.feed_rate : settings.homing.seek_rate;
}
// Checks and reports if target array exceeds machine travel limits. Returns false if check failed.
static bool check_travel_limits (float *target, axes_signals_t axes, bool is_cartesian)
{
bool failed = false;
uint_fast8_t idx = N_AXIS;
if(is_cartesian && (sys.homed.mask & axes.mask)) do {
idx--;
if(bit_istrue(sys.homed.mask, bit(idx)) && bit_istrue(axes.mask, bit(idx)))
failed = target[idx] < sys.work_envelope.min.values[idx] || target[idx] > sys.work_envelope.max.values[idx];
} while(!failed && idx);
return is_cartesian && !failed;
}
// Checks and reports if the arc exceeds machine travel limits. Returns false if check failed.
// NOTE: needs the work envelope to be a cuboid!
static bool check_arc_travel_limits (coord_data_t *target, coord_data_t *position, point_2d_t center, float radius, plane_t plane, int32_t turns)
{
typedef union {
uint_fast8_t value;
struct {
uint_fast8_t pos_y : 1,
neg_x : 1,
neg_y : 1,
pos_x : 1;
};
} arc_x_t;
static const axes_signals_t xyz = { .x = On, .y = On, .z = On };
if((sys.soft_limits.mask & xyz.mask) == 0)
return grbl.check_travel_limits(target->values, sys.soft_limits, true);
arc_x_t x = {0};
point_2d_t start, end;
// Set arc start and end points centered at 0,0 and convert CW arcs to CCW.
if(turns > 0) { // CCW
start.x = position->values[plane.axis_0] - center.x;
start.y = position->values[plane.axis_1] - center.y;
end.x = target->values[plane.axis_0] - center.x;
end.y = target->values[plane.axis_1] - center.y;
} else { // CW
start.x = target->values[plane.axis_0] - center.x;
start.y = target->values[plane.axis_1] - center.y;
end.x = position->values[plane.axis_0] - center.x;
end.y = position->values[plane.axis_1] - center.y;
}
if(labs(turns > 1))
x.value = 0b1111; // Crosses all
else if(start.y >= 0.0f) {
if(start.x > 0.0f) { // Starts in Q1
if(end.y >= 0.0f) {
if(end.x <= 0.0f)
x.value = 0b0001; // Ends in Q2
else if(end.x >= start.x)
x.value = 0b1111; // Ends in Q1, crosses all
} else if(end.x <= 0.0f)
x.value = 0b0011; // Ends in Q3
else
x.value = 0b0111; // Ends in Q4
} else { // Starts in Q2
if(end.y >= 0.0f) {
if(end.x > 0.0f)
x.value = 0b1110; // Ends in Q1
else if(end.x >= start.x)
x.value = 0b1111; // Ends in Q2, crosses all
} else if(end.x <= 0.0f)
x.value = 0b0010; // Ends in Q3
else
x.value = 0b0110; // Ends in Q4
}
} else if(start.x < 0.0f) { // Starts in Q3
if(end.y < 0.0f) {
if(end.x > 0.0f)
x.value = 0b0100; // Ends in Q4
else if(end.x <= start.x)
x.value = 0b1111; // Ends in Q3, crosses all
} else if(end.x > 0.0f)
x.value = 0b1100; // Ends in Q1
else
x.value = 0b1101; // Ends in Q2
} else { // Starts in Q4
if(end.y < 0.0f) {
if(end.x < 0.0f)
x.value = 0b1011; // Ends in Q3
else if(end.x <= start.x)
x.value = 0b1111; // Ends in Q4, crosses all
} else if(end.x > 0.0f)
x.value = 0b1000; // Ends in Q1
else
x.value = 0b1001; // Ends in Q2
}
coord_data_t corner1, corner2;
memcpy(&corner1, turns > 0 ? position : target, sizeof(coord_data_t));
corner1.values[plane.axis_0] = x.neg_x ? center.x - radius : min(position->values[plane.axis_0], target->values[plane.axis_0]);
corner1.values[plane.axis_1] = x.neg_y ? center.y - radius : max(position->values[plane.axis_1], target->values[plane.axis_1]);
if(!grbl.check_travel_limits(corner1.values, sys.soft_limits, true))
return false;
memcpy(&corner2, turns > 0 ? target : position, sizeof(coord_data_t));
corner2.values[plane.axis_0] = x.pos_x ? center.x + radius : max(position->values[plane.axis_0], target->values[plane.axis_0]);
corner2.values[plane.axis_1] = x.pos_y ? center.y + radius : min(position->values[plane.axis_1], target->values[plane.axis_1]);
return grbl.check_travel_limits(corner2.values, sys.soft_limits, true);
}
// Derived from code by Dimitrios Matthes & Vasileios Drakopoulos
// https://www.mdpi.com/1999-4893/16/4/201
static void clip_3d_target (coord_data_t *position, coord_data_t *target, work_envelope_t *envelope)
{
float a = target->x - position->x;
float b = target->y - position->y;
float c = target->z - position->z;
if(target->x < envelope->min.x) {
target->y = b / a * (envelope->min.x - position->x) + position->y;
target->z = c / a * (envelope->min.x - position->x) + position->z;
target->x = envelope->min.x;
} else if(target->x > envelope->max.x) {
target->y = b / a * (envelope->max.x - position->x) + position->y;
target->z = c / a * (envelope->max.x - position->x) + position->z;
target->x = envelope->max.x;
}
if(target->y < envelope->min.y) {
target->x = a / b * (envelope->min.y - position->y) + position->x;
target->z = c / b * (envelope->min.y - position->y) + position->z;
target->y = envelope->min.y;
} else if(target->y > envelope->max.y) {
target->x = a / b * (envelope->max.y - position->y) + position->x;
target->z = c / b * (envelope->max.y - position->y) + position->z;
target->y = envelope->max.y;
}
if(target->z < envelope->min.z) {
target->x = a / c * (envelope->min.z - position->z) + position->x;
target->y = b / c * (envelope->min.z - position->z) + position->y;
target->z = envelope->min.z;
} else if(target->z > envelope->max.z) {
target->x = a / c * (envelope->max.z - position->z) + position->x;
target->y = b / c * (envelope->max.z - position->z) + position->y;
target->z = envelope->max.z;
}
}
// Limits jog commands to be within machine limits, homed axes only.
static void apply_jog_limits (float *target, float *position)
{
if(sys.homed.mask == 0)
return;
uint_fast8_t idx;
if((sys.homed.mask & 0b111) == 0b111) {
uint_fast8_t n_axes = 0;
idx = Z_AXIS + 1;
do {
idx--;
if(fabs(target[idx] - position[idx]) > 0.001f)
n_axes++;
} while(idx && n_axes < 2);
if(n_axes > 1)
clip_3d_target((coord_data_t *)position, (coord_data_t *)target, &sys.work_envelope);
}
idx = N_AXIS;
do {
idx--;
if(bit_istrue(sys.homed.mask, bit(idx)) && settings.axis[idx].max_travel < -0.0f)
target[idx] = max(min(target[idx], sys.work_envelope.max.values[idx]), sys.work_envelope.min.values[idx]);
} while(idx);
}
void limits_init (void)
{
hal.homing.get_feedrate = get_homing_rate;
grbl.check_travel_limits = check_travel_limits;
grbl.check_arc_travel_limits = check_arc_travel_limits;
grbl.apply_jog_limits = apply_jog_limits;
grbl.home_machine = homing_cycle;
}