-
Notifications
You must be signed in to change notification settings - Fork 0
/
unet_model.py
48 lines (39 loc) · 1.43 KB
/
unet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from torch import nn
import utils
from unet_parts import DoubleConv, Down, Up, OutConv
class UNet(nn.Module):
def __init__(self, n_channels=3, out_channels=2, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
self.down4 = Down(512, 512)
self.up1 = Up(1024, 256, bilinear)
self.up2 = Up(512, 128, bilinear)
self.up3 = Up(256, 64, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, out_channels)
def forward(self, x: torch.Tensor, postprocess: bool = False):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return self.postprocess(logits) if postprocess else logits
@classmethod
def postprocess(cls, logits: torch.Tensor, threshold: float = 0.5):
mask = (torch.softmax(logits, dim=1)[:, 1] > threshold)
mask = utils.apply_connected_components_filter(mask)
return mask
@classmethod
def to_image(cls, *args, **kwargs):
return utils.to_image(*args, **kwargs)