-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotter.py
205 lines (179 loc) · 7.9 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
__author__ = "Georgi Tancev, PhD"
__copyright__ = "© Georgi Tancev"
import os
import numpy as np
import matplotlib.pyplot as plt
from environment import BatchCoolingCrystallization
plt.rcParams["lines.linewidth"] = 1.0
plt.rcParams["font.size"] = 6.0
plt.rcParams["axes.titlesize"] = 6.0
class Plotter:
"""
Plotter class.
"""
def __init__(self,
obs_dim, act_dim,
episode_length, n_eval=50,
path="current_run"):
self.obs_dim = obs_dim
self.act_dim = act_dim
self.episode_length = episode_length
self.n_eval = n_eval
self.path = path+"/snapshots"
# Check if path exists, and if not, create it.
if not os.path.exists(self.path):
os.makedirs(self.path)
@staticmethod
def moving_average(s, a=0.10):
"""
Exponential moving average.
a: smoothing factor in [0, 1].
"""
T = len(s)
r = np.zeros(T)
r[0] = s[0]
for k in range(1, T):
r[k] = (1 - a) * r[k-1] + a * (s[k])
return r
def evaluate(self, env, operator, normalizer):
"""
Function to evaluate the current policy.
"""
obs_dim = self.obs_dim
act_dim = self.act_dim
n_eval = self.n_eval
episode_length = self.episode_length
trajectories = np.zeros((n_eval, episode_length - 1, obs_dim + act_dim))
for i in range(n_eval):
state = env.reset()
for t in range(episode_length - 1):
action = operator.get_action(normalizer.transform(state))
trajectories[i, t, :] = np.concatenate((state,
action.numpy().ravel()))
state, _, terminal = env.transition(state, action.numpy().ravel())
if terminal:
break
return trajectories
def take_snapshot(self, env, operator, normalizer, epoch, save_trajectory=True):
"""
Function to draw figures.
"""
path = self.path
trajectories = self.evaluate(env, operator, normalizer)
if save_trajectory:
np.save(path+"/trajectory_epoch_"+str(epoch), np.mean(trajectories, axis=0))
_, T, _ = trajectories.shape
env_vars = vars(env) # get environment variables
time_delta = env_vars["time_delta"] # min
if isinstance(env, BatchCoolingCrystallization):
# Draw states.
L = env_vars["L"] # length, μm
k_V = env_vars["k_V"] # shape factor, -
rho = env_vars["rho"] # density of crystals, kg / m ** 3
t = time_delta * np.arange(0, T) / 60.0
t_max = np.round(self.episode_length * time_delta / 60.0, 0) # h
n = trajectories[:, :, :-3]
fig, axes = plt.subplots(2, 3, sharex=True,
figsize=(2.4*2.90, 0.6*2.90))
fig.tight_layout(w_pad=2.0)
ax0 = axes.ravel()[0]
m_s = np.trapz(np.mean(n, axis=0) * (L * 1e-6) ** 3, L) * k_V * rho
y = self.moving_average(m_s, a=0.5)
ax0.plot(t, y, color=plt.cm.viridis(0.0))
ax0.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax0.set_ylim(0, 0.2)
ax0.set_yticks(np.linspace(0, 0.2, 3))
ax0.set_xlim(0, t_max)
ax0.set_xticks(np.linspace(0, t_max, 4))
ax0.set_ylabel(r'$m$ / $\frac{kg}{kg}$', labelpad=5)
ax0.minorticks_on()
ax0.grid(which="both", alpha=0.1)
# ax0.set_xlabel(r"$t$ / $h$")
ax1 = axes.ravel()[3]
L_V = (np.sum(n * (L) ** 4, axis=-1)) / (np.sum(n * (L) ** 3, axis=-1) + 1.0e0)
y = self.moving_average(np.mean(L_V, axis=0), a=0.5)
ax1.plot(t, y, label=r"$\bar{d}_p$", color=plt.cm.viridis(0.15))
ax1.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax1.set_ylim(0, 800)
ax1.set_yticks(np.linspace(0, 800, 3))
ax1.set_xlim(0, t_max)
ax1.set_xticks(np.linspace(0, t_max, 4))
ax1.set_ylabel(r"$\bar{d}$ / $\mu m$", labelpad=7)
ax1.set_xlabel(r"$t$ / $h$")
ax1.minorticks_on()
ax1.grid(which="both", alpha=0.1)
ax4 = axes.ravel()[1]
c0 = env_vars["c_0"]
c = c0 - m_s
y = self.moving_average(c, a=0.5)
ax4.plot(t, y, color=plt.cm.viridis(0.30))
ax4.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax4.set_ylim(0.1, 0.3)
ax4.set_yticks(np.linspace(0.1, 0.3, 3))
ax4.set_ylabel(r'$c$ / $\frac{kg}{kg}$', labelpad=7)
ax4.minorticks_on()
ax4.grid(which="both", alpha=0.1)
ax5 = axes.ravel()[4]
T = np.mean(trajectories[:, :, -3], axis=0)
c_s = env.c_s(T)
y = self.moving_average(c / c_s, a=0.5)
ax5.plot(t, y, color=plt.cm.viridis(0.45))
ax5.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax5.set_ylim(0, 2)
ax5.set_yticks(np.linspace(0, 2, 3))
ax5.set_ylabel(r'$S$ / $-$', labelpad=9)
ax5.set_xlabel(r"$t$ / $h$")
ax5.minorticks_on()
ax5.grid(which="both", alpha=0.1)
ax2 = axes.ravel()[2]
y = self.moving_average(T - 273.15 , a=0.5)
ax2.plot(t, y, label="$T$", color=plt.cm.viridis(0.60))
ax2.set_ylim(0, 80)
# ax2.set_yscale("log")
ax2.set_yticks(np.linspace(0, 80, 3))
ax2.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax2.set_ylabel(r"$T$ / $°C$", labelpad=10)
ax2.minorticks_on()
ax2.grid(which="both", alpha=0.1)
# Draw actions.
Q_max = env_vars["Q_max"]
A_max = np.array([(2.0e0 * Q_max)])
ax3 = axes.ravel()[5]
y_raw = np.mean(trajectories[:, :, -1], axis=0) * A_max[0] - Q_max
y = self.moving_average(y_raw)
ax3.plot(t, y, label="$H$", color=plt.cm.viridis(0.75))
ax3.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax3.set_xlabel(r"$t$ / $h$")
ax3.set_ylabel(r"$H$ / $\frac{°C}{min}$")
ax3.set_xlim(0, t_max)
ax3.set_xticks(np.linspace(0, t_max, 4))
ax3.set_ylim(-1.0, 1.0)
ax3.set_yticks(np.linspace(-1.0, 1.0, 3))
ax3.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax3.minorticks_on()
ax3.grid(which="both", alpha=0.1)
plt.savefig(path+"/epoch_"+str(epoch)+".png",
dpi=1200, transparent=False, orientation="landscape",
bbox_inches="tight")
plt.close(fig)
if isinstance(env, BatchCoolingCrystallization):
c_f = 1e18 # conversion factor, μm3 / m3
k_V = env_vars["k_V"] # shape factor, -
rho = env_vars["rho"] # density of crystals, kg / m ** 3
L = env_vars["L"]
p_V = np.mean(trajectories[:, -1, :-3], axis=0) * (L * 1e-6) ** 3 * c_f * k_V * rho
fig, ax = plt.subplots(1, 1, sharex=True, figsize=(1.2*2.95, 0.4*2.95))
ax.plot(L, p_V, color=plt.cm.viridis(0.25))
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim(10, 10000)
ax.set_ylim(1e8, 1e16)
# ax.ticklabel_format(axis="x", style="sci", scilimits=(0, 0))
ax.set_xlabel(r'$d$ / $\mu m$')
ax.set_ylabel(r'$\rho_v$ / $\frac{\mu m^3}{\mu m \cdot kg}$')
ax.minorticks_on()
ax.grid(which="both", alpha=0.1)
plt.savefig(path+"/psd_epoch_"+str(epoch)+".png",
dpi=1200, transparent=False,
orientation='landscape', bbox_inches="tight")
plt.close(fig)