-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget-results.py
88 lines (81 loc) · 3.85 KB
/
get-results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import print_function
import argparse, os, sys, random, time, datetime
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
#
import torch
def get_args():
parser = argparse.ArgumentParser(description='Get AutoDO Results')
parser.add_argument('--data', default='./local_data', type=str, metavar='NAME',
help='folder to save all data')
parser.add_argument('--dataset', default='MNIST', type=str,
help='dataset MNIST/CIFAR10/CIFAR100/SVHN/SVHN_extra/ImageNet')
parser.add_argument('-ir', '--imbalance-ratio', type=int, default=1, metavar='N',
help='ratio of [1:C/2] to [C/2+1:C] labels in the training dataset drawn from uniform distribution')
parser.add_argument('-sr', '--subsample-ratio', type=float, default=1.0, metavar='N',
help='ratio of selected to total labels in the training dataset drawn from uniform distribution')
parser.add_argument('-nr', '--noise-ratio', type=float, default=0.0, metavar='N',
help='ratio of noisy (randomly flipped) labels (default: 0.0)')
parser.add_argument('--overfit', action='store_true', default=False,
help='ablation: estimate DA on test data (default: False)')
parser.add_argument('--oversplit', action='store_true', default=False,
help='ablation: train on all data (default: False)')
parser.add_argument('--aug-model', default='NONE', type=str,
help='type of augmentation model NONE/RAND/AUTO/DADA/SHAred/SEParate parameters (default: NONE)')
parser.add_argument('--los-model', default='NONE', type=str,
help='type of model for other loss hyperparams NONE/SOFT/WGHT/BOTH (default: NONE)')
parser.add_argument('--hyper-opt', default='NONE', type=str,
help='type of bilevel optimization NONE/HES (default: NONE)')
args = parser.parse_args()
return args
def main(args):
save_folder = '{}/{}'.format(args.data, args.dataset)
args.hyper_est = True
overfit = args.overfit
oversplit = args.oversplit
hyper_est = args.hyper_est
imbalance_ratio = args.imbalance_ratio
subsample_ratio = args.subsample_ratio
noise_ratio = args.noise_ratio
model_postfix = 'ir_{}_sr_{}_nr_{}'.format(imbalance_ratio, subsample_ratio, noise_ratio)
#
if args.dataset == 'MNIST':
model_name = 'resnet18'
runs = 8
elif args.dataset == 'CIFAR10':
model_name = 'wresnet28_10'
runs = 4
elif args.dataset == 'CIFAR100':
model_name = 'wresnet28_10'
runs = 4
elif args.dataset == 'SVHN' or args.dataset == 'SVHN_extra':
extra_svhn = True if 'extra' in args.dataset else False
model_name = 'wresnet28_10_extra' if extra_svhn else 'wresnet28_10'
runs = 4
elif args.dataset == 'ImageNet':
model_name = 'resnet18'
runs = 1
else:
print('{} is not supported dataset!\n'.format(args.dataset))
sys.exit(0)
#
if overfit:
model_name = 'overfit_' + model_name
if oversplit:
model_name = 'oversplit_' + model_name
#
acc = torch.zeros(runs)
for r in range(runs):
run_folder = 'run{}'.format(r)
model_folder = '{}/{}'.format(save_folder, run_folder)
run_name = '{}_opt_{}_est_{}_aug_model_{}_los_model_{}_{}'.format(
model_name, args.hyper_opt, args.hyper_est, args.aug_model, args.los_model, model_postfix)
checkpoint_file = '{}/best_{}.pt'.format(model_folder, run_name)
checkpoint = torch.load(checkpoint_file)
acc[r] = checkpoint['acc']
print('{} : {}'.format(checkpoint_file, acc[r]))
print('Mean/Std', torch.mean(acc), torch.std(acc))
if __name__ == '__main__':
args = get_args()
main(args)