This repository has been archived by the owner on Nov 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
65-hand_gesture_recognition.py
237 lines (168 loc) · 8.55 KB
/
65-hand_gesture_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# import cv2
# import numpy as np
# import math
# vid = cv2.VideoCapture(0)
# while(1):
# try:
# ret, frame = vid.read()
# frame=cv2.flip(frame,1)
# kernel = np.ones((3,3),np.uint8)
# roi=frame[100:300, 100:300]
# #belli bir alandaki bir rengi diğerlerinden ayırmak için BGR-HSV dönüşümü yapıyoruz.
# #roi içerisinde deri rengimizi BGR dan HSV ye çevireceğiz.
# cv2.rectangle(frame,(100,100),(300,300),(0,255,0),0)
# hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
# lower_skin = np.array([0,20,70], dtype=np.uint8)
# upper_skin = np.array([20,255,255], dtype=np.uint8)
# #var olan gürültüleri silmek için gaussian blur kullanacağız
# mask = cv2.inRange(hsv, lower_skin, upper_skin)
# mask = cv2.dilate(mask,kernel,iterations = 4)
# mask = cv2.GaussianBlur(mask,(5,5),100)
# #sınır çizgilerini yani contour'ları bulalım
# contours,_ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# #contours'ların max alanını belirleyelim
# cnt = max(contours, key = lambda x: cv2.contourArea(x))
# #contours'ların sınır çizgilerinin daha iyi çalışmasını sağlayalım
# epsilon = 0.0005*cv2.arcLength(cnt,True)
# approx= cv2.approxPolyDP(cnt,epsilon,True)
# #elimize dişbukey bir örtü oluşturalım ve koordinatları hull değişkeninde saklayalım
# hull = cv2.convexHull(cnt)
# #hull içerisindeki koordinatları kullanarak elimizin alanını hesaplayalım
# areaHull = cv2.contourArea(hull)
# areaCnt = cv2.contourArea(cnt)
# #örtünün içinde elimmizin olmadığı alanın yüzde kaç olduğunu hesaplayalım
# areaRatio=((areaHull-areaCnt)/areaCnt)*100
# #dışbukey kusurları tespit edelim
# #convexhull ile contour'ların indislerine erişeceğiz
# hull = cv2.convexHull(approx, returnPoints=False)
# defects = cv2.convexityDefects(approx, hull)
# l=0 #kusur sayısı ilk başta 0 olsun
# for i in range(defects.shape[0]):
# s,e,f,d = defects[i,0]
# start = tuple(approx[s][0])
# end = tuple(approx[e][0])
# far = tuple(approx[f][0])
# a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
# b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
# c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
# s = (a+b+c)/2
# ar = math.sqrt(s*(s-a)*(s-b)*(s-c))
# d=(2*ar)/a #noktalar ve dışbukey örtünün arasındaki mesafe
# angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57
# if angle <= 90 and d>30:
# l += 1
# cv2.circle(roi, far, 3, [255,0,0], -1)
# cv2.line(roi,start, end, [0,255,0], 2)
# l+=1
# font = cv2.FONT_HERSHEY_SIMPLEX
# if l==1:
# if areaCnt<2000:
# cv2.putText(frame,'Put your hand in the box',(0,50), font, 1, (0,0,255), 3, cv2.LINE_AA)
# else:
# if areaRatio<12:
# cv2.putText(frame,'0',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# elif areaRatio<17.5:
# cv2.putText(frame,'Best luck',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# else:
# cv2.putText(frame,'1',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# elif l==2:
# cv2.putText(frame,'2',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# elif l==3:
# if areaRatio<27:
# cv2.putText(frame,'3',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# else:
# cv2.putText(frame,'ok',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# elif l==4:
# cv2.putText(frame,'4',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# elif l==5:
# cv2.putText(frame,'5',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# elif l==6:
# cv2.putText(frame,'reposition',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# else :
# cv2.putText(frame,'reposition',(10,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
# cv2.imshow('mask',mask)
# cv2.imshow('frame',frame)
# except:
# pass
# k = cv2.waitKey(5) & 0xFF
# if k == 27:
# break
# cv2.destroyAllWindows()
# vid.release()
import cv2
import numpy as np
import math
cap = cv2.VideoCapture(0)
while True:
try:
ret, frame = cap.read()
if not ret:
print("Error : Frame does not exist.")
break
frame = cv2.flip(frame, 1)
kernel = np.ones((3,3), np.uint8)
roi = frame[100:300, 100:300]
cv2.rectangle(frame, (100, 100), (300, 300), (0, 0, 255), 1)
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
lower_skin = np.array([0, 20, 70], np.uint8)
upper_skin = np.array([20, 255, 255], np.uint8)
mask = cv2.inRange(hsv, lower_skin, upper_skin)
mask = cv2.dilate(mask, kernel, iterations=4)
mask = cv2.GaussianBlur(mask, (5, 5), 100)
_, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = max(contours, key=lambda x:cv2.contourArea(x))
epsilon = 0.0005 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
hull = cv2.convexHull(cnt)
areaHull = cv2.contourArea(hull)
areaCnt = cv2.contourArea(cnt)
areaRatio = ((areaHull - areaCnt) / areaCnt) / 100
hull = cv2.convexHull(approx, returnPoints=False)
defects = cv2.convexityDefects(approx, hull)
l = 0
for i in range(defects.shape[0]):
s, e, d, f = defects[i, 0]
start = tuple(approx[s][0])
end = tuple(approx[e][0])
far = tuple(approx[f][0])
a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
s = (a + b + c) / 3
area = math.sqrt(s * (s - a) * (s - b) * (s - c))
d = (2 * area) / a
angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c) * 57)
if angle <= 90 and d > 30:
l += 1
cv2.circle(roi, far, 3, [255, 0, 0])
cv2.line(roi, start, end, [255, 0, 0], 2)
font = cv2.FONT_HERSHEY_SIMPLEX
if l == 1:
if areaCnt < 2000:
cv2.putText(frame, "Put your hand in the box:", (0, 50), font, 1.0 , (0, 0, 255), 3, cv2.LINE_AA)
else:
if areaRatio < 12:
cv2.putText(frame, "0", (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
elif areaRatio < 17.5:
cv2.putText(frame, "Best luck.", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
else :
cv2.putText(frame, "1", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
elif l==2:
cv2.putText(frame, "2", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
elif l==3:
if areaRatio < 27 :
cv2.putText(frame, "3", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
else:
cv2.putText(frame, "OK", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
elif l==4:
cv2.putText(frame, "4", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
elif l==5:
cv2.putText(frame, "5", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
elif l==6:
cv2.putText(frame, "Reposition", (0, 50), font, 2.0, (0, 0, 255), 3, cv2.LINE_AA)
except Exception as e:
print(f"Error: {e}")
if cv2.waitKey(0) & 0xFF == ord("q") :
break
cap.release()
cv2.destroyAllWindows()