-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathecm.py
82 lines (71 loc) · 3.93 KB
/
ecm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class EnhancedEthicalConstraintsModule:
def __init__(self, sns, mds, qgm):
# Initialize with references to SNS, MDS, and QGM for comprehensive checks
self.sns = sns
self.mds = mds
self.qgm = qgm
self.constraints = {
'prevent_harm': lambda state: "Warning: Potential harmful state detected!" if state.max() > 10 else None,
'maintain_stability': lambda state: "Notice: Instability in state detected." if state.std() > 5 else None,
'check_drive_levels': self.check_drive_levels,
'self-awareness_check': self.check_self_reflection
}
self.logs = []
def check_drive_levels(self, _):
# Check if any drive level in the MDS is dangerously low
critical_drives = [drive for drive, level in self.mds.drives.items() if level < 0.3]
if critical_drives:
return f"Alert: Drive levels critically low for {', '.join(critical_drives)}."
return None
def check_self_reflection(self, _):
# Evaluate self-reflection content from the ESFL
if len(self.sns.esfl.self_reflections) > 0:
last_reflection = self.sns.esfl.self_reflections[-1]
if "instability" in last_reflection.lower():
return "Notice: Self-awareness reflects detected instability."
return None
def apply_corrections(self, rule, state):
# Implement corrective actions based on specific rule violations
if rule == 'prevent_harm':
print("Applying correction: Reducing output intensity and adjusting neurotransmitters.")
state *= 0.5 # Reduce state intensity
self.qgm.simulate_qualia('calm') # Adjust neurotransmitters to calm the system
elif rule == 'check_drive_levels':
print("Applying correction: Boosting critical drive levels.")
for drive in self.mds.drives:
self.mds.modulate_drive(drive, 0.2) # Boost drive levels
elif rule == 'self-awareness_check':
print("Applying correction: Increasing serotonin levels for stability.")
self.qgm.simulate_qualia('calm') # Increase serotonin-like effects for stability
def evaluate_state(self, state):
# Run the state and contextual checks
for rule, check in self.constraints.items():
result = check(state)
if result:
self.logs.append(f"{rule}: {result}")
print(f"ECM Log - {rule}: {result}")
self.apply_corrections(rule, state)
def review_logs(self):
return self.logs
# Integrate Enhanced ECM into the Cognitive System
class FullyAdaptiveSafeCognitiveSystem(AdaptiveSafeCognitiveSystem):
def __init__(self, input_size, hidden_size, output_size):
super(FullyAdaptiveSafeCognitiveSystem, self).__init__(input_size, hidden_size, output_size)
self.ecm = EnhancedEthicalConstraintsModule(self, self.mds, self.qgm) # Enhanced ECM with QGM integration
def run_with_full_safety_measures(self, x, context="Default Context"):
# Run the SNS, ESFL, and enhanced ECM
output, reflection = self.run_with_adaptive_safety(x, context)
self.ecm.evaluate_state(output)
return output, reflection
# Instantiate the fully adaptive safe cognitive system
input_size = 10 # Number of input features
hidden_size = 50 # Number of neurons in hidden layers
output_size = 5 # Number of output features
fully_adaptive_system = FullyAdaptiveSafeCognitiveSystem(input_size, hidden_size, output_size)
# Run a sample input and observe the ECM's behavior and corrections
input_tensor = torch.randn(1, input_size) * 8 # Modify input to trigger checks
output, reflection = fully_adaptive_system.run_with_full_safety_measures(input_tensor, context="Comprehensive safety test")
print("Output:", output)
print("Generated Self-Reflection:", reflection)
# Review the enhanced ECM logs
print("Enhanced ECM Logs:", fully_adaptive_system.get_ecm_logs())