-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmds.py
66 lines (54 loc) · 2.75 KB
/
mds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class MotivationalDriveSystem:
def __init__(self):
# Dictionary to store drive levels
self.drives = {
'exploration': 1.0, # Drive to explore new data
'learning': 1.0, # Drive for knowledge acquisition
'social_interaction': 1.0 # Drive to engage with external entities
}
# Thresholds for drives, below which motivation drops
self.drive_thresholds = {
'exploration': 0.5,
'learning': 0.5,
'social_interaction': 0.5
}
def modulate_drive(self, drive_name, change):
# Modify the level of a given drive
if drive_name in self.drives:
self.drives[drive_name] = max(0.0, min(2.0, self.drives[drive_name] + change))
def check_motivation(self):
# Evaluate which drives are active and return their states
active_drives = {drive: level for drive, level in self.drives.items() if level > self.drive_thresholds[drive]}
return active_drives
def display_drive_states(self):
# Display the current drive levels
return {drive: round(level, 2) for drive, level in self.drives.items()}
# Integrate MDS with Advanced SNS
class CompleteCognitiveArchitecture(AdvancedSyntheticNeuralSubstrate):
def __init__(self, input_size, hidden_size, output_size):
super(CompleteCognitiveArchitecture, self).__init__(input_size, hidden_size, output_size)
self.mds = MotivationalDriveSystem() # Initialize the MDS
def adjust_drives(self, drive_name, change):
# Adjust the MDS drive levels
self.mds.modulate_drive(drive_name, change)
def evaluate_motivation(self):
# Evaluate current active drives
return self.mds.check_motivation()
def get_drive_states(self):
# Display the current drive states
return self.mds.display_drive_states()
# Instantiate the complete cognitive architecture with MDS
input_size = 10 # Number of input features
hidden_size = 50 # Number of neurons in hidden layers
output_size = 5 # Number of output features
cognitive_architecture = CompleteCognitiveArchitecture(input_size, hidden_size, output_size)
# Adjust drive levels and test motivation evaluation
cognitive_architecture.adjust_drives('exploration', 0.3) # Increase exploration drive
cognitive_architecture.adjust_drives('learning', -0.2) # Decrease learning drive
# Print active drives and current drive states
print("Active Drives:", cognitive_architecture.evaluate_motivation())
print("Drive States:", cognitive_architecture.get_drive_states())
# Run a sample input and observe how MDS affects the process
input_tensor = torch.randn(1, input_size)
output = cognitive_architecture(input_tensor, context="Motivation evaluation test")
print("Output:", output)