-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsm.py
53 lines (42 loc) · 2.08 KB
/
rsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
class RecursiveSelfModel:
def __init__(self):
self.episodic_memory = [] # Stores snapshots of past states
self.current_state = None # Tracks current state
self.predicted_future_state = None # Anticipates future states
def update_state(self, new_state):
# Store the current state in episodic memory before updating
if self.current_state is not None:
self.episodic_memory.append(self.current_state.clone().detach())
self.current_state = new_state
def predict_future_state(self, model):
# Use a simple prediction mechanism, such as applying the model to the current state
if self.current_state is not None:
self.predicted_future_state = model(self.current_state)
def review_memory(self):
# Return a summary of the episodic memory for debugging
return [state.tolist() for state in self.episodic_memory]
# Integrating the RSM with SNS
class EnhancedSyntheticNeuralSubstrate(SyntheticNeuralSubstrate):
def __init__(self, input_size, hidden_size, output_size):
super(EnhancedSyntheticNeuralSubstrate, self).__init__(input_size, hidden_size, output_size)
self.rsm = RecursiveSelfModel() # Initialize the RSM
def forward(self, x):
# Perform the forward pass and update the RSM
output = super().forward(x)
self.rsm.update_state(output)
return output
def get_self_model_review(self):
# Review the episodic memory stored in the RSM
return self.rsm.review_memory()
# Instantiate the enhanced SNS with the RSM
input_size = 10 # Number of input features
hidden_size = 50 # Number of neurons in hidden layers
output_size = 5 # Number of output features
enhanced_sns = EnhancedSyntheticNeuralSubstrate(input_size, hidden_size, output_size)
# Test the new model by running sample input
input_tensor = torch.randn(1, input_size)
output = enhanced_sns(input_tensor)
# Print the output and review the memory stored by the RSM
print("Output:", output)
print("Episodic Memory Review:", enhanced_sns.get_self_model_review())