-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgpt.py
208 lines (185 loc) · 8.42 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
from time import sleep
import logging
import openai
from tenacity import retry, wait_random_exponential, stop_after_attempt
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.organization = os.getenv("ORG_ID")
class GPT3:
def __init__(self, engine, temp=0, max_tokens=128, n=1, stop=['\n']):
self.engine = engine
self.temp = temp
self.max_tokens = max_tokens
self.n = n
self.stop = stop
def extract_re(self, query, prompt=""):
query_prompt = prompt + query
outs = self.generate(query_prompt)
name_entities = outs[0].split(' | ')
return name_entities
def translate(self, query, prompt=""):
if isinstance(query, list):
query = query[0]
query_prompt = prompt + query
outs = self.generate(query_prompt)
return outs
def generate(self, query_prompt):
complete = False
ntries = 0
while not complete:
try:
raw_responses = openai.Completion.create(
model=self.engine,
prompt=query_prompt,
temperature=self.temp,
max_tokens=self.max_tokens,
stop=self.stop,
n=self.n,
# logprobs=5
)
complete = True
except:
sleep(30)
logging.info(f"{ntries}: waiting for the server. sleep for 30 sec...\n{query_prompt}")
logging.info("OK continue")
ntries += 1
if self.n == 1:
responses = [raw_responses["choices"][0]["text"].strip()]
else:
responses = [choice["text"].strip() for choice in raw_responses["choices"]]
return responses
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embedding(self, text): # engines must match when compare two embeddings
text = text.replace("\n", " ") # replace newlines, which can negatively affect performance
embedding = openai.Embedding.create(
input=[text],
model=self.engine # change for different embedding dimension
)["data"][0]["embedding"]
return embedding
class GPT4:
def __init__(self, engine="gpt-4", temp=0, max_tokens=128, n=1, stop=['\n']):
self.engine = engine
self.temp = temp
self.max_tokens = max_tokens
self.n = n
self.stop = stop
def extract_re(self, query, prompt=""):
query_prompt = prompt + query
outs = self.generate(query_prompt)
name_entities = outs[0].split(' | ')
return name_entities
def translate(self, query, prompt=""):
if isinstance(query, list):
query = query[0]
query_prompt = prompt + query
outs = self.generate(query_prompt)
return outs
def generate(self, query_prompt):
complete = False
ntries = 0
while not complete:
try:
raw_responses = openai.ChatCompletion.create(
model=self.engine,
messages=prompt2msg(query_prompt),
temperature=self.temp,
n=self.n,
stop=self.stop,
max_tokens=self.max_tokens,
)
complete = True
except:
sleep(30)
logging.info(f"{ntries}: waiting for the server. sleep for 30 sec...")
# logging.info(f"{ntries}: waiting for the server. sleep for 30 sec...\n{query_prompt}")
logging.info("OK continue")
ntries += 1
if self.n == 1:
responses = [raw_responses["choices"][0]["message"]["content"].strip()]
else:
responses = [choice["message"]["content"].strip() for choice in raw_responses["choices"]]
return responses
@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embedding(self, text): # engines must match when compare two embeddings
text = text.replace("\n", " ") # replace newlines, which can negatively affect performance
embedding = openai.Embedding.create(
input=[text],
model=self.engine # change for different embedding dimension
)["data"][0]["embedding"]
return embedding
def prompt2msg(query_prompt):
"""
Make prompts for GPT-3 compatible with GPT-3.5 and GPT-4.
Support prompts for
RER: e.g., data/osm/rer_prompt_16.txt
symbolic translation: e.g., data/prompt_symbolic_batch12_perm/prompt_nexamples1_symbolic_batch12_perm_ltl_formula_9_42_fold0.txt
end-to-end translation: e.g., data/osm/osm_full_e2e_prompt_boston_0.txt
:param query_prompt: prompt used by text completion API (text-davinci-003).
:return: message used by chat completion API (gpt-3, gpt-3.5-turbo).
"""
# prompt_splits = query_prompt.split("\n\n")
# system_prompt = "\n\n".join(prompt_splits[0: -1]) # task description and common examples
# query = prompt_splits[-1] # specific context info and query question
#
# msg = [{"role": "system", "content": system_prompt}]
# msg.append({"role": "user", "content": query})
prompt_splits = query_prompt.split("\n\n")
task_description = prompt_splits[0]
examples = prompt_splits[1: -1]
query = prompt_splits[-1]
msg = [{"role": "system", "content": task_description}]
for example in examples:
if "\n" in example:
example_splits = example.split("\n")
q = '\n'.join(example_splits[0:-1]) # every line except the last in 1 example block
a_splits = example_splits[-1].split(" ") # last line is the response
q += f"\n{a_splits.pop(0)}"
a = " ".join(a_splits)
msg.append({"role": "user", "content": q})
msg.append({"role": "assistant", "content": a})
else: # info should be in system prompt, e.g., landmark list
msg[0]["content"] += f"\n{example}"
msg.append({"role": "user", "content": query})
return msg
if __name__ == "__main__":
# gpt3 = GPT3("text-davinci-003", n=3)
# query_prompt = \
# "English: Go to Bookstore then to Science Library\n" \
# "Landmarks: Bookstore | Science Library\n" \
# "LTL: F ( Bookstore & F ( Science Library ) )\n\n" \
# "English: Go to Bookstore then reach Science Library\n" \
# "Landmarks: Bookstore | Science Library\n" \
# "LTL: F ( Bookstore & F ( Science Library ) )\n\n" \
# "English: Find Bookstore then go to Science Library\n" \
# "Landmarks: Bookstore | Science Library\n" \
# "LTL: F ( Bookstore & F ( Science Library ) )\n\n" \
# "English: Go to Burger Queen then to black stone park, but after KFC\n" \
# "Landmarks: Burger Queen | black stone park | KFC\n" \
# "LTL: F ( Burger Queen & F ( KFC & F ( black stone park ) )\n\n" \
# "English: Go to Burger Queen then to black stone park; go to KFC before black stone park and after Burger Queen\n"\
# "Landmarks: Burger Queen | black stone park | KFC\n" \
# "LTL: F ( Burger Queen & F ( KFC & F ( black stone park ) )\n\n" \
# "English: Go to Science Library then Burger Queen\n"
# response = gpt3.generate(query_prompt)
# print(response)
# gpt3 = GPT3("text-embedding-ada-002")
# embedding = gpt3.get_embedding("Burger Queen")
# print(embedding)
gpt4 = GPT4()
query_prompt = \
"Your tasks is to repeat exact strings from the given utterance which possibly refer to certain propositions." \
"English: Go to Bookstore then to Science Library\n" \
"Landmarks: Bookstore | Science Library\n\n" \
"English: Go to Bookstore then reach Science Library\n" \
"Landmarks: Bookstore | Science Library\n\n" \
"English: Find Bookstore then go to Science Library\n" \
"Landmarks: Bookstore | Science Library\n\n" \
"English: Go to Burger Queen then to black stone park, but after KFC\n" \
"Landmarks: Burger Queen | black stone park | KFC\n\n" \
"English: Go to Burger Queen then to black stone park; go to KFC before black stone park and after Burger Queen\n" \
"Landmarks: Burger Queen | black stone park | KFC\n\n" \
"English: Go to Science Library then Burger Queen\n" \
"Landmarks:"
response = gpt4.generate(query_prompt)
print(response)
breakpoint()