-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlang2ltl.py
190 lines (156 loc) · 8.84 KB
/
lang2ltl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import logging
from openai.embeddings_utils import cosine_similarity
from gpt import GPT3, GPT4
from get_embed import generate_embeds
from s2s_sup_tcd import Seq2Seq
from s2s_hf_transformers import HF_MODELS
from formula_sampler import ALL_PROPS
from utils import load_from_file, save_to_file, build_placeholder_map, substitute
SHARED_DPATH = os.path.join(os.path.expanduser('~'), "data", "shared", "lang2ltl") # group's data folder on cluster
def lang2ltl(utt, obj2sem, keep_keys,
data_dpath=f"{SHARED_DPATH}/data", exp_name="lang2ltl-api",
rer_model="gpt4", rer_engine="gpt-4", rer_prompt_fpath=f"{SHARED_DPATH}/data/rer_prompt_diverse_16.txt",
embed_model="gpt3", embed_engine="text-embedding-ada-002", ground_model="gpt3", topk=2, update_embed=True,
model_dpath=f"{SHARED_DPATH}/model_3000000", sym_trans_model="t5-base", convert_rule="lang2ltl", props=ALL_PROPS,
):
if sym_trans_model in HF_MODELS:
model_fpath = os.path.join(model_dpath, "t5-base", "checkpoint-best")
translation_engine = model_fpath
elif sym_trans_model == "gpt3_finetuned":
translation_engine = f"gpt3_finetuned_symbolic_batch12_perm_utt_0.2_42"
translation_engine = load_from_file(os.path.join(model_dpath, "gpt3_models.pkl"))[translation_engine]
else:
raise ValueError(f"ERROR: unrecognized symbolic translation model: {sym_trans_model}")
logging.info(f"RER engine: {rer_engine}")
logging.info(f"Embedding engine: {embed_model} {embed_engine}")
logging.info(f"Symbolic translation engine: {translation_engine}\n")
logging.info(f"Input Utterance to be translated:\n{utt}\n")
res, utt2res = rer(rer_model, rer_engine, rer_prompt_fpath, [utt])
logging.info(f"\nExtracted Referring Expressions (REs):\n{res}\n")
obj2embed, obj2embed_fpath = generate_embeds(embed_model, data_dpath, obj2sem, keep_keys=keep_keys, embed_engine=embed_engine, exp_name=exp_name, update_embed=update_embed)
logging.info(f"Generated Database of Embeddings for:\n{obj2sem}\nsaved at:\n{obj2embed_fpath}\n")
re2embed_dpath = os.path.join(data_dpath, "re_embeds")
os.makedirs(re2embed_dpath, exist_ok=True)
re2embed_fpath = os.path.join(re2embed_dpath, f"re2embed_{exp_name}_{embed_model}-{embed_engine}.pkl")
re2grounds = ground_res(res, re2embed_fpath, obj2embed_fpath, ground_model, embed_engine, topk)
logging.info(f"Groundings for REs:\n{re2grounds}\n")
ground_utts, objs_per_utt = ground_utterances([utt], utt2res, re2grounds)
logging.info(f"Grounded Input Utterance:\n{ground_utts[0]}\ngroundings: {objs_per_utt[0]}\n")
sym_utts, sym_ltls, out_ltls, placeholder_maps = translate_grounded_utts(ground_utts, objs_per_utt, sym_trans_model, translation_engine, convert_rule, props)
logging.info(f"Placeholder Map:\n{placeholder_maps[0]}\n")
logging.info(f"Symbolic Utterance:\n{sym_utts[0]}\n")
logging.info(f"Translated Symbolic LTL Formula:\n{sym_ltls[0]}\n")
logging.info(f"Grounded LTL Formula:\n{out_ltls[0]}\n\n\n")
return out_ltls[0]
def rer(rer_model, rer_engine, rer_prompt, input_utts):
"""
Referring Expression Recognition: extract name entities from input utterances.
"""
rer_prompt = load_from_file(rer_prompt)
if rer_model == "gpt3":
rer_module = GPT3(rer_engine)
elif rer_model == "gpt4":
rer_module = GPT4(rer_engine)
else:
raise ValueError(f"ERROR: RER module not recognized: {rer_model}")
names, utt2names = set(), [] # name entity list names should not have duplicates
for idx_utt, utt in enumerate(input_utts):
logging.info(f"Extracting referring expressions from utterance: {idx_utt}/{len(input_utts)}")
names_per_utt = [name.strip() for name in rer_module.extract_re(query=f"{rer_prompt.strip()} {utt}\nPropositions:")]
names_per_utt = list(set(names_per_utt)) # remove duplicated RE
# extra_names = [] # make sure both 'name' and 'the name' are in names_per_utt to mitigate RER error
# for name in names_per_utt:
# name_words = name.split()
# if name_words[0] == "the":
# extra_name = " ".join(name_words[1:])
# else:
# name_words.insert(0, "the")
# extra_name = " ".join(name_words)
# if extra_name not in names_per_utt:
# extra_names.append(extra_name)
# names_per_utt += extra_names
names.update(names_per_utt)
utt2names.append((utt, names_per_utt))
return names, utt2names
def ground_res(res, re2embed_fpath, obj_embed, ground_model, embed_engine, topk):
"""
Find groundings (objects in given environment) of referring expressions (REs) extracted from input utterances.
"""
obj2embed = load_from_file(obj_embed) # load embeddings of known objects in given environment
if os.path.exists(re2embed_fpath): # load cached embeddings of referring expressions
re2embed = load_from_file(re2embed_fpath)
else:
re2embed = {}
if ground_model == "gpt3":
ground_module = GPT3(embed_engine)
else:
raise ValueError(f"ERROR: grounding module not recognized: {ground_model}")
re2grounds = {}
is_new_embed = False
for re in res:
logging.info(f"grounding referring expression: {re}")
if re in re2embed: # use cached RE embedding if exists
logging.info(f"use cached RE embedding: {re}")
re_embed = re2embed[re]
else:
re_embed = ground_module.get_embedding(re)
re2embed[re] = re_embed
is_new_embed = True
sims = {o: cosine_similarity(e, re_embed) for o, e in obj2embed.items()}
sims_sorted = sorted(sims.items(), key=lambda kv: kv[1], reverse=True)
re2grounds[re] = list(dict(sims_sorted[:topk]).keys())
if is_new_embed:
save_to_file(re2embed, re2embed_fpath)
return re2grounds
def ground_utterances(input_strs, utt2res, re2grounds):
"""
Replace referring expressions in input utterances with best matching objects in given env.
"""
grounding_maps = [] # name to grounding map per utterance
for _, res in utt2res:
grounding_maps.append({re: re2grounds[re][0] for re in res})
output_strs, subs_per_str = substitute(input_strs, grounding_maps, is_utt=True)
return output_strs, subs_per_str
def translate_grounded_utts(ground_utts, objs_per_utt, sym_trans_model, translation_engine, convert_rule, props, trans_modular_prompt=None):
"""
Translation language to LTL modular approach.
:param ground_utts: Input utterances with name entities grounded to objects in given environment.
:param objs_per_utt: grounding objects for each input utterance.
:param sym_trans_model: symbolic translation model, gpt3_finetuned, gpt3_pretrained, t5-base.
:param translation_engine: pretrained T5 model weights, finetuned or pretrained GPT-3 engine to use for translation.
:param convert_rule: referring expression to proposition conversion rule.
:param props: all possible propositions.
:param trans_modular_prompt: prompt for pretrained GPT-3.
:return: output grounded LTL formulas, corresponding intermediate symbolic LTL formulas, placeholder maps
"""
if sym_trans_model in HF_MODELS:
trans_module = Seq2Seq(translation_engine, sym_trans_model)
elif "gpt3" in sym_trans_model:
trans_module = GPT3(translation_engine)
if "ft" in translation_engine:
trans_modular_prompt = ""
elif "text-davinci" in translation_engine:
trans_modular_prompt = load_from_file(trans_modular_prompt)
else:
raise ValueError(f"ERROR: Unrecognized translation engine: {translation_engine}")
else:
raise ValueError(f"ERROR: translation module not recognized: {sym_trans_model}")
placeholder_maps, placeholder_maps_inv = [], []
for objs in objs_per_utt:
placeholder_map, placeholder_map_inv = build_placeholder_map(objs, convert_rule, props)
placeholder_maps.append(placeholder_map)
placeholder_maps_inv.append(placeholder_map_inv)
symbolic_utts, _ = substitute(ground_utts, placeholder_maps, is_utt=True) # replace names by symbols
symbolic_ltls = []
for idx, sym_utt in enumerate(symbolic_utts):
logging.info(f"Symbolic Translation: {idx}/{len(symbolic_utts)}")
query = sym_utt.translate(str.maketrans('', '', ',.'))
if "gpt3" in sym_trans_model:
query = f"Utterance: {query}\nLTL:" # query format for finetuned GPT-3
ltl = trans_module.translate(query, trans_modular_prompt)[0]
else:
ltl = trans_module.type_constrained_decode([query])[0]
symbolic_ltls.append(ltl)
output_ltls, _ = substitute(symbolic_ltls, placeholder_maps_inv, is_utt=False) # replace symbols by props
return symbolic_utts, symbolic_ltls, output_ltls, placeholder_maps