-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtarget_height_diff.py
285 lines (251 loc) · 10.7 KB
/
target_height_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# create a plane in vertical calculate vector intersection difference
import json
import os
import pandas as pd
import math
import numpy as np
import sys
import matplotlib.pyplot as plt
# Specify the path to the JSON file
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
json_file_path = os.getcwd() + "/data.json"
data = pd.read_json(script_dir+'/landmark_data.json')
old_target_img = ["1_left_n_1", "1_left_y_1","2_left_n_1", "2_left_y_1",
"3_left_n_1", "3_left_y_1", "4_left_n_1", "4_left_y_1",
"4_right_n_1"]
# identify values that make sense
ideal_image_list = ["4_right_n_3.png", "4_right_n_2.png", "1_right_y_2.png",
"4_right_n_1.png", "3_right_n_1.png", "4_right_n_5.png",
"4_right_n_4.png", "4_left_n_1.png", "3_left_n_1.png",
"4_left_n_2.png", "3_left_y_3.png", "2_left_y_5.png",
"4_left_y_2.png", "4_left_y_1.png", "1_left_n_4.png",
"4_right_y_5.png", "3_right_y_1.png"]
# Target 3D location, 1-4 from left to right
t1 = [1.05, 0, -1.02]
t2 = [.39, 0, -.72]
t3 = [-.39, 0, -.72]
t4 = [-1.05, 0, -1.02]
targets = [t1, t2, t3, t4]
t1_old = [1.05, 0, -0.56]
t2_old = [.39, 0, -.24]
t3_old = [-.39, 0, -.24]
t4_old = [-1.05, 0, -0.56]
old_targets = [t1_old, t2_old, t3_old, t4_old]
# get landmark location
names = []
nose = []
left_eye = []
right_eye = []
mid_eye = []
left_wrist = []
right_wrist = []
left_shoulder = []
right_shoulder = []
left_elbow = []
right_elbow = []
offsets = []
target = []
NOSE = 0
LEFT_EYE = 2
RIGHT_EYE = 5
LEFT_SHOULDER = 11
RIGHT_SHOULDER = 12
LEFT_ELBOW = 13
RIGHT_ELBOW = 14
LEFT_WRIST = 15
RIGHT_WRIST = 16
LEFT_HEEL = 29
RIGHT_HEEL = 30
LEFT_FOOT_INDEX = 31
RIGHT_FOOT_INDEX = 32
for entry in data["image"]:
name = entry['name'][0]
# skip the image if there is no eye orientation
if not(name in ideal_image_list):
continue
# if '_n_' in name:
# continue
names.append(entry['name'][0])
if name in old_target_img:
t = old_targets[int(name[0])-1]
else:
t = targets[int(name[0])-1]
target.append(t)
c = entry['landmark_3D']
nose.append([c[NOSE]['x'],c[NOSE]['y'],c[NOSE]['z']])
left_eye_coord = [c[LEFT_EYE]['x'], c[LEFT_EYE]['y'],c[LEFT_EYE]['z']]
right_eye_coord = [c[RIGHT_EYE]['x'], c[RIGHT_EYE]['y'],c[RIGHT_EYE]['z']]
left_eye.append(left_eye_coord)
right_eye.append(right_eye_coord)
mid_eye.append(((np.array(left_eye_coord)+ np.array(right_eye_coord))/2).tolist())
left_wrist.append([c[LEFT_WRIST]['x'], c[LEFT_WRIST]['y'],c[LEFT_WRIST]['z']])
right_wrist.append([c[RIGHT_WRIST]['x'], c[RIGHT_WRIST]['y'],c[RIGHT_WRIST]['z']])
left_shoulder.append([c[LEFT_SHOULDER]['x'], c[LEFT_SHOULDER]['y'],c[LEFT_SHOULDER]['z']])
right_shoulder.append([c[RIGHT_SHOULDER]['x'], c[RIGHT_SHOULDER]['y'],c[RIGHT_SHOULDER]['z']])
left_elbow.append([c[LEFT_ELBOW]['x'], c[LEFT_ELBOW]['y'],c[LEFT_ELBOW]['z']])
right_elbow.append([c[RIGHT_ELBOW]['x'], c[RIGHT_ELBOW]['y'],c[RIGHT_ELBOW]['z']])
ground = max(c[LEFT_HEEL]['y'], c[RIGHT_HEEL]['y'], c[LEFT_FOOT_INDEX]['y'], c[RIGHT_FOOT_INDEX]['y'])
offsets.append(ground)
df = pd.DataFrame(list(zip(names, target, nose, left_eye, right_eye, mid_eye, left_wrist, right_wrist, left_shoulder, right_shoulder, left_elbow, right_elbow, offsets)),
columns =['Names', 'Target', 'Nose', 'Left eye', 'Right eye', 'Mid eye', 'Left wrist', 'Right wrist', 'Left shoulder', 'Right shoulder', 'Left elbow', 'Right elbow', 'Offsets'])
# get landmark vector
# get target locations
# define vertical plane
# find plane intersection
def plane_line_intersection(la, lb, target_location, y_offset):
# print(la, lb, target_location, y_offset)
if la and lb:
# the line passing through la and lb is la + lab*t, where t is a scalar parameter
la = np.array(la)
lb = np.array(lb)
lab = lb-la # vector from point 1 to point 2
tx = target_location[0]
ty = target_location[1]
tz = target_location[2]
# the plane passing through p0, p1, p2 is p0 + p01*u + p02*v, where u and v are scalar parameters
# ground plane (y-0)
# TODO: Change to vertical plane base on the target location
p0 = np.array([tx, ty+1, tz]) # point 0 on plane
p1 = np.array([tx,ty, tz+1]) # point 1 on plane
p2 = np.array([tx, ty, tz]) # point 2 on plane
print("Points:", p0, p1, p2)
p01 = p1-p0 # vector from point 0 to point 1
p02 = p2-p0 # vector from point 0 to point 2
# setting this up as a system of linear equations and solving for t,u,v
A = np.array([-lab, p01, p02]).T # the matrix of coefficients
b = np.array([la-p0]).T# the vector of constants
try:
tuv = np.matmul(np.linalg.inv(A),b) # solve the system of linear equations
intersection = la+lab*tuv[0] # the solution is the point of intersection
# calculate the angle between the vector and plane
n = np.cross(p01, p02)
angle = math.pi/2 - np.arccos(abs(np.dot(n, lab)) / np.linalg.norm(n) * np.linalg.norm(lab))
return [angle, intersection]
except:
return [None]
else:
return [None]
def calculate_vector(a, b):
if a and b:
distance = [b[0]-a[0], b[1]-a[1], b[2]-a[2]]
norm = math.sqrt(distance[0] ** 2 + distance[1] ** 2 + distance[2] ** 2)
return [distance[0] / norm, distance[1] / norm, distance[2] / norm]
else:
return None
output = {'image':[]}
vector_list = ["eye_wrist",
"ave_eye_wrist",
"nose_wrist",
"shoulder_wrist",
"elbow_wrist"]
eye_list = []
ave_eye_list = []
shoulder_list = []
nose_list = []
elbow_list = []
for i, row in df.iterrows():
# ground plane has y=0 and we shift the world coordinates up by offset
#init dict structure
vector_ground_data = {}
# # left eye left wrist
name = df['Names'][i]
print(name)
vector_ground_data["name"] = name
if "left" in name:
# point with left arm
eye = 'Left eye'
shoulder = 'Left shoulder'
elbow = 'Left elbow'
wrist = 'Left wrist'
else:
eye = 'Right eye'
shoulder = 'Right shoulder'
elbow = 'Right elbow'
wrist = 'Right wrist'
# eye
point_a1 = (df[eye][i][0], df[eye][i][1] - df['Offsets'][i], df[eye][i][2])
point_b1 = (df[wrist][i][0], df[wrist][i][1] - df['Offsets'][i], df[wrist][i][2])
intersect_point_1 = plane_line_intersection(point_a1, point_b1, df['Target'][i], 0)
print("eye:", intersect_point_1[1][1])
# ave_eye
point_a2 = (df['Mid eye'][i][0], df['Mid eye'][i][1] - df['Offsets'][i], df['Mid eye'][i][2])
point_b2 = (df[wrist][i][0], df[wrist][i][1] - df['Offsets'][i], df[wrist][i][2])
intersect_point_2 = plane_line_intersection(point_a2, point_b2, df['Target'][i], 0)
print("average eye:", intersect_point_2[1][1])
# nose
point_a3 = (df['Nose'][i][0], df['Nose'][i][1] - df['Offsets'][i], df['Nose'][i][2])
point_b3 = (df[wrist][i][0], df[wrist][i][1] - df['Offsets'][i], df[wrist][i][2])
intersect_point_3 = plane_line_intersection(point_a3, point_b3, df['Target'][i], 0)
print("nose vector:", intersect_point_3[1][1])
# shoulder
point_a4 = (df[shoulder][i][0], df[shoulder][i][1] - df['Offsets'][i], df[shoulder][i][2])
point_b4 = (df[wrist][i][0], df[wrist][i][1] - df['Offsets'][i], df[wrist][i][2])
intersect_point_4 = plane_line_intersection(point_a4, point_b4, df['Target'][i], 0)
print("shoulder vector:", intersect_point_4[1][1])
#elbow
point_a5 = (df[elbow][i][0], df[elbow][i][1] - df['Offsets'][i], df[elbow][i][2])
point_b5 = (df[wrist][i][0], df[wrist][i][1] - df['Offsets'][i], df[wrist][i][2])
intersect_point_5 = plane_line_intersection(point_a5, point_b5, df['Target'][i], 0)
print("elbow vector:", intersect_point_5[1][1])
eye_list.append(intersect_point_1[1][1])
ave_eye_list.append(intersect_point_2[1][1])
nose_list.append(intersect_point_3[1][1])
shoulder_list.append(intersect_point_4[1][1])
elbow_list.append(intersect_point_5[1][1])
"""ground = {"eye": intersect_point_1[1].tolist(),
"ave_eye":intersect_point_2[1].tolist(),
"shoulder":intersect_point_3[1].tolist(),
"nose": intersect_point_4[1].tolist(),
"elbow": intersect_point_5[1].tolist()}
vector_ground_data["ground"] = ground
output["image"].append(vector_ground_data)"""
plt.figure()
fig, ax = plt.subplots()
# # Creating a scatter plot for each list
# plt.scatter(range(len(eye_list)), eye_list, label='eye', marker='o')
# plt.scatter(range(len(ave_eye_list)), ave_eye_list, label='ave_eye', marker='s')
# plt.scatter(range(len(nose_list)), nose_list, label='nose', marker='^')
# plt.scatter(range(len(shoulder_list)), shoulder_list, label='shoulder', marker='x')
# plt.scatter(range(len(elbow_list)), elbow_list, label='elbow', marker='D')
# # Adding labels and a legend
# plt.yscale('log')
# plt.xlabel('image')
# plt.ylabel('Y values')
# plt.legend()
# plt.show()
def filter_outliers(dataset):
std_dev = np.std(dataset)
mean = np.mean(dataset)
return [x for x in dataset if abs(x - mean) < 3 * std_dev]
# Create a box and whisker plot
data = [eye_list, ave_eye_list, nose_list, shoulder_list, elbow_list]
# Filter outliers and calculate the mean for each dataset
filtered_data = [filter_outliers(dataset) for dataset in data]
means = [round(np.mean(filtered_dataset),2) for filtered_dataset in filtered_data]
medians = [round(np.median(filtered_dataset),2) for filtered_dataset in filtered_data]
print("mean:", means)
print("median", medians)
plt.boxplot(filtered_data, showfliers=False)
plt.scatter([1, 2, 3, 4, 5], means)
# Add labels to the x-axis
plt.xticks([1, 2, 3, 4, 5], ['eye\n mean:%.2f \n median: %.2f'%(means[0], medians[0]),
'ave_eye\n mean:%.2f \n median: %.2f'%(means[1], medians[1]),
'nose\n mean:%.2f \n median: %.2f'%(means[2], medians[2]),
'shoulder\n mean:%.2f \n median: %.2f'%(means[3], medians[3]),
'elbow\n mean:%.2f \n median: %.2f'%(means[4], medians[4])])
# Add a title and labels to the axes
plt.title('y intersection of target and landmark to wrist vector')
plt.xlabel('landmark to wrist vector[m]')
plt.ylabel('height[ground as 0]')
# Show the plot
# Add minor gridlines on the y-axis
plt.grid(True, which='major', axis='y', linestyle='--', linewidth=0.5)
plt.subplots_adjust(bottom=0.2 )
plt.show()
"""with open(script_dir+'/target_intersection_height.json', 'w') as json_file:
json.dump(output, json_file, indent=4)
print("Finished exporting landmark data.")"""
# get vertical distribution & skewness
# loop through df, we only care about the one with looking in the direction,
# scatter plot
# box & whisker plot