-
Notifications
You must be signed in to change notification settings - Fork 0
/
Q4.py
72 lines (53 loc) · 1.75 KB
/
Q4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#Q4
#In this question we use cvxpy to plot linear regression and compare it with linear regression of matplotlib
import cvxpy as cp
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(40)
y = 0.3 * x + 5 + np.random.standard_normal(40)
plt.scatter(x, y)
def estimate_coef(x, y):
# number of observations/points
n = np.size(x)
# mean of x and y vector
m_x, m_y = np.mean(x), np.mean(y)
# calculating cross-deviation and deviation about x
SS_xy = np.sum(y*x) - n*m_y*m_x
SS_xx = np.sum(x*x) - n*m_x*m_x
# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x
return(b_0, b_1)
def plot_regression_line(x, y, b):
# plotting the actual points as scatter plot
plt.scatter(x, y, color = "m",
marker = "o", s = 30)
# predicted response vector
y_pred = b[0] + b[1]*x
# plotting the regression line
plt.plot(x, y_pred, color = "g")
# putting labels
plt.xlabel('x')
plt.ylabel('y')
# function to show plot
plt.show()
def plot_regression_with_CVXY():
b0 = cp.Variable()
b1 = cp.Variable()
obj = 0
for i in range(40):
obj += (b0 * x[i] + b1 - y[i]) ** 2
cp.Problem(cp.Minimize(obj), []).solve()
b0 = b0.value; b1 = b1.value
plt.scatter(x, y)
plt.plot(x, b0 * x + b1)
def main():
# observations
# estimating coefficients
b = estimate_coef(x, y)
print("Estimated coefficients:\nb_0 = {} \ nb_1 = {}".format(b[0], b[1]))
# plotting regression line
plot_regression_line(x, y, b)
plot_regression_with_CVXY()
if __name__ == "__main__":
main()