-
Notifications
You must be signed in to change notification settings - Fork 6
/
ssd_engine.py
86 lines (68 loc) · 3.6 KB
/
ssd_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import os
# import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
# from collections import defaultdict
# from io import StringIO
# from matplotlib import pyplot as plt
# from PIL import Image
import cv2
## Object detection imports
from object_detection.utils import label_map_util
import visualization as vis_util
class SSD_Detector:
def __init__(self):
CWD_PATH = os.getcwd()
MODEL_FOLDER = 'models'
MODEL_NAME = 'ssd_mobilenet_v1_model'
PATH_TO_CKPT = os.path.join(CWD_PATH, MODEL_FOLDER ,MODEL_NAME, 'frozen_inference_graph.pb')
PATH_TO_LABELS = os.path.join(CWD_PATH, MODEL_FOLDER, MODEL_NAME, 'label_map.pbtxt')
# 1 - person, 2 - dog, 3 - cat
NUM_CLASSES = 3
# ssd engine ready signal
self.ready = False
# begin load models
try:
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
self.detection_graph.as_default()
except:
print('Warning! Failed to load ' + MODEL_NAME + ' frozen graph file (.pb), object detection disabled')
try:
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
self.category_index = label_map_util.create_category_index(categories)
self.sess = tf.Session(graph=self.detection_graph)
self.ready = True
except:
print('Warning! Failed to load ' + MODEL_NAME + ' label map (.pbtxt), object detection disabled')
def process_image(self, image_np):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = self.sess.run([boxes, scores, classes, num_detections],feed_dict={image_tensor: image_np_expanded})
# Obtain objects detected in the current frame
objects_detected, isDetected = vis_util.visualize_boxes_and_labels_on_image_array(image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
self.category_index,
use_normalized_coordinates=True,
line_thickness=4)
return image_np, isDetected