-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20. Kth Smallest Element in a BST.cpp
69 lines (57 loc) · 1.5 KB
/
20. Kth Smallest Element in a BST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k)
{
int a[2]={0}; //will store the index of inorder traversal and value
inorder(root,a,k);
return a[1];
}
void inorder(TreeNode* root, int a[], int k)
{
if(root==NULL) return;
inorder(root->left,a,k); //left tree traversal
a[0]++; //incrementing index of traversal
if((a[0])==k) //if index==k
{
a[1] = root->val; //found answer
return;
}
inorder(root->right,a,k); //right tree traversal
}
};