-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexporter.py
376 lines (326 loc) · 14.7 KB
/
exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to export object detection inference graph."""
import logging
import os
import tensorflow as tf
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.client import session
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import importer
from tensorflow.python.platform import gfile
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.training import saver as saver_lib
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
slim = tf.contrib.slim
# TODO: Replace with freeze_graph.freeze_graph_with_def_protos when
# newer version of Tensorflow becomes more common.
def freeze_graph_with_def_protos(
input_graph_def,
input_saver_def,
input_checkpoint,
output_node_names,
restore_op_name,
filename_tensor_name,
clear_devices,
initializer_nodes,
optimize_graph=False,
variable_names_blacklist=''):
"""Converts all variables in a graph and checkpoint into constants."""
del restore_op_name, filename_tensor_name # Unused by updated loading code.
# 'input_checkpoint' may be a prefix if we're using Saver V2 format
if not saver_lib.checkpoint_exists(input_checkpoint):
raise ValueError(
'Input checkpoint "' + input_checkpoint + '" does not exist!')
if not output_node_names:
raise ValueError(
'You must supply the name of a node to --output_node_names.')
# Remove all the explicit device specifications for this node. This helps to
# make the graph more portable.
if clear_devices:
for node in input_graph_def.node:
node.device = ''
with tf.Graph().as_default():
tf.import_graph_def(input_graph_def, name='')
if optimize_graph:
logging.info('Graph Rewriter optimizations enabled')
rewrite_options = rewriter_config_pb2.RewriterConfig(
optimize_tensor_layout=True)
rewrite_options.optimizers.append('pruning')
rewrite_options.optimizers.append('constfold')
rewrite_options.optimizers.append('layout')
graph_options = tf.GraphOptions(
rewrite_options=rewrite_options, infer_shapes=True)
else:
logging.info('Graph Rewriter optimizations disabled')
graph_options = tf.GraphOptions()
config = tf.ConfigProto(graph_options=graph_options)
with session.Session(config=config) as sess:
if input_saver_def:
saver = saver_lib.Saver(saver_def=input_saver_def)
saver.restore(sess, input_checkpoint)
else:
var_list = {}
reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
try:
tensor = sess.graph.get_tensor_by_name(key + ':0')
except KeyError:
# This tensor doesn't exist in the graph (for example it's
# 'global_step' or a similar housekeeping element) so skip it.
continue
var_list[key] = tensor
saver = saver_lib.Saver(var_list=var_list)
saver.restore(sess, input_checkpoint)
if initializer_nodes:
sess.run(initializer_nodes)
variable_names_blacklist = (variable_names_blacklist.split(',') if
variable_names_blacklist else None)
output_graph_def = graph_util.convert_variables_to_constants(
sess,
input_graph_def,
output_node_names.split(','),
variable_names_blacklist=variable_names_blacklist)
return output_graph_def
def _image_tensor_input_placeholder():
"""Returns placeholder and input node that accepts a batch of uint8 images."""
input_tensor = tf.placeholder(dtype=tf.uint8,
shape=(None, None, None, 3),
name='image_tensor')
return input_tensor, input_tensor
def _tf_example_input_placeholder():
"""Returns input that accepts a batch of strings with tf examples.
Returns:
a tuple of placeholder and input nodes that output decoded images.
"""
batch_tf_example_placeholder = tf.placeholder(
tf.string, shape=[None], name='tf_example')
def decode(tf_example_string_tensor):
tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
tf_example_string_tensor)
image_tensor = tensor_dict[fields.InputDataFields.image]
return image_tensor
return (batch_tf_example_placeholder,
tf.map_fn(decode,
elems=batch_tf_example_placeholder,
dtype=tf.uint8,
parallel_iterations=32,
back_prop=False))
def _encoded_image_string_tensor_input_placeholder():
"""Returns input that accepts a batch of PNG or JPEG strings.
Returns:
a tuple of placeholder and input nodes that output decoded images.
"""
batch_image_str_placeholder = tf.placeholder(
dtype=tf.string,
shape=[None],
name='encoded_image_string_tensor')
def decode(encoded_image_string_tensor):
image_tensor = tf.image.decode_image(encoded_image_string_tensor,
channels=3)
image_tensor.set_shape((None, None, 3))
return image_tensor
return (batch_image_str_placeholder,
tf.map_fn(
decode,
elems=batch_image_str_placeholder,
dtype=tf.uint8,
parallel_iterations=32,
back_prop=False))
input_placeholder_fn_map = {
'image_tensor': _image_tensor_input_placeholder,
'encoded_image_string_tensor':
_encoded_image_string_tensor_input_placeholder,
'tf_example': _tf_example_input_placeholder,
}
def _add_output_tensor_nodes(postprocessed_tensors,
output_collection_name='inference_op'):
"""Adds output nodes for detection boxes and scores.
Adds the following nodes for output tensors -
* num_detections: float32 tensor of shape [batch_size].
* detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
containing detected boxes.
* detection_scores: float32 tensor of shape [batch_size, num_boxes]
containing scores for the detected boxes.
* detection_classes: float32 tensor of shape [batch_size, num_boxes]
containing class predictions for the detected boxes.
* detection_masks: (Optional) float32 tensor of shape
[batch_size, num_boxes, mask_height, mask_width] containing masks for each
detection box.
Args:
postprocessed_tensors: a dictionary containing the following fields
'detection_boxes': [batch, max_detections, 4]
'detection_scores': [batch, max_detections]
'detection_classes': [batch, max_detections]
'detection_masks': [batch, max_detections, mask_height, mask_width]
(optional).
'num_detections': [batch]
output_collection_name: Name of collection to add output tensors to.
Returns:
A tensor dict containing the added output tensor nodes.
"""
label_id_offset = 1
boxes = postprocessed_tensors.get('detection_boxes')
scores = postprocessed_tensors.get('detection_scores')
classes = postprocessed_tensors.get('detection_classes') + label_id_offset
masks = postprocessed_tensors.get('detection_masks')
num_detections = postprocessed_tensors.get('num_detections')
outputs = {}
outputs['detection_boxes'] = tf.identity(boxes, name='detection_boxes')
outputs['detection_scores'] = tf.identity(scores, name='detection_scores')
outputs['detection_classes'] = tf.identity(classes, name='detection_classes')
outputs['num_detections'] = tf.identity(num_detections, name='num_detections')
if masks is not None:
outputs['detection_masks'] = tf.identity(masks, name='detection_masks')
for output_key in outputs:
tf.add_to_collection(output_collection_name, outputs[output_key])
if masks is not None:
tf.add_to_collection(output_collection_name, outputs['detection_masks'])
return outputs
def _write_frozen_graph(frozen_graph_path, frozen_graph_def):
"""Writes frozen graph to disk.
Args:
frozen_graph_path: Path to write inference graph.
frozen_graph_def: tf.GraphDef holding frozen graph.
"""
with gfile.GFile(frozen_graph_path, 'wb') as f:
f.write(frozen_graph_def.SerializeToString())
logging.info('%d ops in the final graph.', len(frozen_graph_def.node))
def _write_saved_model(saved_model_path,
frozen_graph_def,
inputs,
outputs):
"""Writes SavedModel to disk.
If checkpoint_path is not None bakes the weights into the graph thereby
eliminating the need of checkpoint files during inference. If the model
was trained with moving averages, setting use_moving_averages to true
restores the moving averages, otherwise the original set of variables
is restored.
Args:
saved_model_path: Path to write SavedModel.
frozen_graph_def: tf.GraphDef holding frozen graph.
inputs: The input image tensor to use for detection.
outputs: A tensor dictionary containing the outputs of a DetectionModel.
"""
with tf.Graph().as_default():
with session.Session() as sess:
tf.import_graph_def(frozen_graph_def, name='')
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
tensor_info_inputs = {
'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
tensor_info_outputs = {}
for k, v in outputs.items():
tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)
detection_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs=tensor_info_inputs,
outputs=tensor_info_outputs,
method_name=signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
detection_signature,
},
)
builder.save()
def _write_graph_and_checkpoint(inference_graph_def,
model_path,
input_saver_def,
trained_checkpoint_prefix):
for node in inference_graph_def.node:
node.device = ''
with tf.Graph().as_default():
tf.import_graph_def(inference_graph_def, name='')
with session.Session() as sess:
saver = saver_lib.Saver(saver_def=input_saver_def,
save_relative_paths=True)
saver.restore(sess, trained_checkpoint_prefix)
saver.save(sess, model_path)
def _export_inference_graph(input_type,
detection_model,
use_moving_averages,
trained_checkpoint_prefix,
output_directory,
optimize_graph=False,
output_collection_name='inference_op'):
"""Export helper."""
tf.gfile.MakeDirs(output_directory)
frozen_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
saved_model_path = os.path.join(output_directory, 'saved_model')
model_path = os.path.join(output_directory, 'model.ckpt')
if input_type not in input_placeholder_fn_map:
raise ValueError('Unknown input type: {}'.format(input_type))
placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type]()
inputs = tf.to_float(input_tensors)
preprocessed_inputs = detection_model.preprocess(inputs)
output_tensors = detection_model.predict(preprocessed_inputs)
postprocessed_tensors = detection_model.postprocess(output_tensors)
outputs = _add_output_tensor_nodes(postprocessed_tensors,
output_collection_name)
saver = None
if use_moving_averages:
variable_averages = tf.train.ExponentialMovingAverage(0.0)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
else:
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
_write_graph_and_checkpoint(
inference_graph_def=tf.get_default_graph().as_graph_def(),
model_path=model_path,
input_saver_def=input_saver_def,
trained_checkpoint_prefix=trained_checkpoint_prefix)
frozen_graph_def = freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=trained_checkpoint_prefix,
output_node_names=','.join(outputs.keys()),
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
clear_devices=True,
optimize_graph=optimize_graph,
initializer_nodes='')
_write_frozen_graph(frozen_graph_path, frozen_graph_def)
_write_saved_model(saved_model_path, frozen_graph_def, placeholder_tensor,
outputs)
def export_inference_graph(input_type,
pipeline_config,
trained_checkpoint_prefix,
output_directory,
optimize_graph=False,
output_collection_name='inference_op'):
"""Exports inference graph for the model specified in the pipeline config.
Args:
input_type: Type of input for the graph. Can be one of [`image_tensor`,
`tf_example`].
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
trained_checkpoint_prefix: Path to the trained checkpoint file.
output_directory: Path to write outputs.
optimize_graph: Whether to optimize graph using Grappler.
output_collection_name: Name of collection to add output tensors to.
If None, does not add output tensors to a collection.
"""
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
_export_inference_graph(input_type, detection_model,
pipeline_config.eval_config.use_moving_averages,
trained_checkpoint_prefix, output_directory,
optimize_graph, output_collection_name)