-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_lm.py
executable file
·167 lines (158 loc) · 6.16 KB
/
train_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import torch
from torch import cuda
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import numpy as np
import time
import logging
from data import Dataset
from models import RNNLM
from utils import *
parser = argparse.ArgumentParser()
# Data path options
parser.add_argument('--train_file', default='data/ptb-train.pkl')
parser.add_argument('--val_file', default='data/ptb-val.pkl')
parser.add_argument('--test_file', default='data/ptb-test.pkl')
parser.add_argument('--train_from', default='')
# Model options
parser.add_argument('--w_dim', default=650, type=int, help='hidden dimension for LM')
parser.add_argument('--h_dim', default=650, type=int, help='hidden dimension for LM')
parser.add_argument('--num_layers', default=2, type=int, help='number of layers in LM and the stack LSTM (for RNNG)')
parser.add_argument('--dropout', default=0.5, type=float, help='dropout rate')
# Optimization options
parser.add_argument('--count_eos_ppl', default=0, type=int, help='whether to count eos in val PPL')
parser.add_argument('--test', default=0, type=int, help='')
parser.add_argument('--save_path', default='urnng.pt', help='where to save the data')
parser.add_argument('--num_epochs', default=30, type=int, help='number of training epochs')
parser.add_argument('--min_epochs', default=8, type=int, help='do not decay learning rate for at least this many epochs')
parser.add_argument('--lr', default=1, type=float, help='starting learning rate')
parser.add_argument('--decay', default=0.5, type=float, help='')
parser.add_argument('--param_init', default=0.1, type=float, help='parameter initialization (over uniform)')
parser.add_argument('--max_grad_norm', default=5, type=float, help='gradient clipping parameter')
parser.add_argument('--gpu', default=2, type=int, help='which gpu to use')
parser.add_argument('--seed', default=3435, type=int, help='random seed')
parser.add_argument('--print_every', type=int, default=500, help='print stats after this many batches')
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_data = Dataset(args.train_file)
val_data = Dataset(args.val_file)
vocab_size = int(train_data.vocab_size)
print('Train: %d sents / %d batches, Val: %d sents / %d batches' %
(train_data.sents.size(0), len(train_data), val_data.sents.size(0),
len(val_data)))
print('Vocab size: %d' % vocab_size)
cuda.set_device(args.gpu)
if args.train_from == '':
model = RNNLM(vocab = vocab_size,
w_dim = args.w_dim,
h_dim = args.h_dim,
dropout = args.dropout,
num_layers = args.num_layers)
if args.param_init > 0:
for param in model.parameters():
param.data.uniform_(-args.param_init, args.param_init)
else:
print('loading model from ' + args.train_from)
checkpoint = torch.load(args.train_from)
model = checkpoint['model']
print("model architecture")
print(model)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
model.train()
model.cuda()
epoch = 0
decay= 0
if args.test == 1:
test_data = Dataset(args.test_file)
test_ppl = eval(test_data, model, count_eos_ppl = args.count_eos_ppl)
sys.exit(0)
best_val_ppl = eval(val_data, model, count_eos_ppl = args.count_eos_ppl)
while epoch < args.num_epochs:
start_time = time.time()
epoch += 1
print('Starting epoch %d' % epoch)
train_nll = 0.
num_sents = 0.
num_words = 0.
b = 0
for i in np.random.permutation(len(train_data)):
sents, length, batch_size, gold_actions, gold_spans, gold_binary_trees, other_data = train_data[i]
if length == 1:
continue
sents = sents.cuda()
b += 1
optimizer.zero_grad()
optimizer.zero_grad()
nll = -model(sents).mean()
train_nll += nll.item()*batch_size
nll.backward()
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
num_sents += batch_size
num_words += batch_size * length
if b % args.print_every == 0:
param_norm = sum([p.norm()**2 for p in model.parameters()]).item()**0.5
print('Epoch: %d, Batch: %d/%d, LR: %.4f, TrainPPL: %.2f, |Param|: %.4f, BestValPerf: %.2f, Throughput: %.2f examples/sec' %
(epoch, b, len(train_data), args.lr, np.exp(train_nll / num_words),
param_norm, best_val_ppl, num_sents / (time.time() - start_time)))
print('--------------------------------')
print('Checking validation perf...')
val_ppl = eval(val_data, model, count_eos_ppl = args.count_eos_ppl)
print('--------------------------------')
if val_ppl < best_val_ppl:
best_val_ppl = val_ppl
checkpoint = {
'args': args.__dict__,
'model': model.cpu(),
'word2idx': train_data.word2idx,
'idx2word': train_data.idx2word
}
print('Saving checkpoint to %s' % args.save_path)
torch.save(checkpoint, args.save_path)
model.cuda()
else:
if epoch > args.min_epochs:
decay = 1
if decay == 1:
args.lr = args.decay*args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
if args.lr < 0.03:
break
print("Finished training")
def eval(data, model, count_eos_ppl = 0):
model.eval()
num_words = 0
total_nll = 0.
with torch.no_grad():
for i in list(reversed(range(len(data)))):
sents, length, batch_size, gold_actions, gold_spans, gold_binary_trees, other_data = data[i]
if length == 1: #we ignore length 1 sents in URNNG eval so do this for LM too
continue
if args.count_eos_ppl == 1:
length += 1
else:
sents = sents[:, :-1]
sents = sents.cuda()
num_words += length * batch_size
nll = -model(sents).mean()
total_nll += nll.item()*batch_size
ppl = np.exp(total_nll / num_words)
print('PPL: %.2f' % (ppl))
model.train()
return ppl
if __name__ == '__main__':
args = parser.parse_args()
main(args)