-
Notifications
You must be signed in to change notification settings - Fork 0
/
systemTraining.py
151 lines (146 loc) · 5.43 KB
/
systemTraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import uuid
import os
import pathlib
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('agg')
BASE_DIR = os.getenv("BASE_DIR")
# section untuk training data
data_model = str(BASE_DIR)+"/static/model"
dataset_dir = str(BASE_DIR)+"/static/dataset"
data_dir = pathlib.Path(dataset_dir)
batch_size = 32
size = 180
def trainingProcess(kdPengujian):
print(" ========== training start ==========")
# set training data
train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(size, size),
batch_size=batch_size
)
# set testing data
val_dataset = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(size, size),
batch_size=batch_size
)
# tuning dataset
class_names = train_dataset.class_names
AUTOTUNE = tf.data.AUTOTUNE
train_dataset = train_dataset.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_dataset = val_dataset.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
normalized_dataset = train_dataset.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_dataset))
first_image = image_batch[0]
num_classes = len(class_names)
# build model
model = Sequential([
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(size, size, 3)),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
model.summary()
# start iteration
epochs = 10
history = model.fit(train_dataset,validation_data=val_dataset,epochs=epochs)
# create plot eval
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
# Grafik training and validation loss (save file plot)
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.savefig(str(BASE_DIR)+'/static/file_plot/train_eval/'+str(kdPengujian)+'.png')
# data augmentation
data_augmentation = keras.Sequential(
[
layers.experimental.preprocessing.RandomFlip("horizontal",input_shape = (size,size,3)),
layers.experimental.preprocessing.RandomRotation(0.1),
layers.experimental.preprocessing.RandomZoom(0.1),
]
)
# model sequental
model = Sequential([
data_augmentation,
layers.experimental.preprocessing.Rescaling(1./255),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.25),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
# epoech sequental 2
model.summary()
epochs = 15
history = model.fit(train_dataset,validation_data=val_dataset,epochs=epochs)
# accuracy evaluasi
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
#Grafik training and validation loss
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.savefig(str(BASE_DIR)+'/static/file_plot/acc_evaluasi/'+str(kdPengujian)+'.png')
# save model
if not os.path.exists(data_model):
os.makedirs(data_model)
model.save(data_model, overwrite=True)
print("model berhasil di simpan")
print(" ========== training finish ==========")
return 0