Single cell analyses require a lot of memory and often fail on the laptops. Having R + Seurat installed in a conda environment + interactive session or batch jobs with 50-100G RAM helps.
which conda
/n/app/bcbio/dev/anaconda/bin/conda
conda --version
conda 4.6.14
conda create -n r r-essentials r-base zlib pandoc
conda init bash
conda config --set auto_activate_base false
. ~/.bashrc
conda activate r
which R
R
install.packages("Seurat")
library(Seurat)
q()
R
install.packages(c("BiocManager", "remotes"))
BiocManager::install("monocle")
q()
R
install.packages("devtools")
library(devtools)
install_github("MacoskoLab/liger")
library(liger)
q()
pip install umap-learn
conda deactivate
- It may ask you to install github token - too many packages loaded from github. I generated token on my laptop and placed it in ~/.Renviron
- BiocManager::install("slingshot") - I failed to install it due to gsl issues.
- when running a batch job, use source activate r/ source deactivate
- if conda is trying to write in bcbio cache, check and set cache priority, your home cache should be first:
conda info
,
~/.condarc
pkgs_dirs:
- /home/[UID]/.conda/pkgs
- /n/app/bcbio/dev/anaconda/pkgs